Description: Show two versions of a closure with reflexive properties are equal. (Contributed by RP, 19-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mptrcllem.ex1 | |
|
mptrcllem.ex2 | |
||
mptrcllem.hyp1 | |
||
mptrcllem.hyp2 | |
||
mptrcllem.hyp3 | |
||
mptrcllem.sub1 | |
||
mptrcllem.sub2 | |
||
mptrcllem.sub3 | |
||
Assertion | mptrcllem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptrcllem.ex1 | |
|
2 | mptrcllem.ex2 | |
|
3 | mptrcllem.hyp1 | |
|
4 | mptrcllem.hyp2 | |
|
5 | mptrcllem.hyp3 | |
|
6 | mptrcllem.sub1 | |
|
7 | mptrcllem.sub2 | |
|
8 | mptrcllem.sub3 | |
|
9 | 6 7 | anbi12d | |
10 | id | |
|
11 | 10 | unssad | |
12 | 11 | adantr | |
13 | 12 | a1i | |
14 | 13 | alrimiv | |
15 | ssintab | |
|
16 | 14 15 | sylibr | |
17 | 3 4 | jca | |
18 | 2 9 16 17 | clublem | |
19 | simpl | |
|
20 | dmss | |
|
21 | rnss | |
|
22 | 20 21 | jca | |
23 | unss12 | |
|
24 | ssres2 | |
|
25 | 22 23 24 | 3syl | |
26 | 25 | adantr | |
27 | simprr | |
|
28 | 26 27 | sstrd | |
29 | 19 28 | jca | |
30 | 29 | a1i | |
31 | unss | |
|
32 | 30 31 | imbitrdi | |
33 | 32 | alrimiv | |
34 | ssintab | |
|
35 | 33 34 | sylibr | |
36 | 1 8 35 5 | clublem | |
37 | 18 36 | eqssd | |
38 | 37 | mpteq2ia | |