Metamath Proof Explorer


Theorem mrerintcl

Description: The relative intersection of a set of closed sets is closed. (Contributed by Stefan O'Rear, 3-Apr-2015)

Ref Expression
Assertion mrerintcl CMooreXSCXSC

Proof

Step Hyp Ref Expression
1 rint0 S=XS=X
2 1 adantl CMooreXSCS=XS=X
3 mre1cl CMooreXXC
4 3 ad2antrr CMooreXSCS=XC
5 2 4 eqeltrd CMooreXSCS=XSC
6 simp2 CMooreXSCSSC
7 mresspw CMooreXC𝒫X
8 7 3ad2ant1 CMooreXSCSC𝒫X
9 6 8 sstrd CMooreXSCSS𝒫X
10 simp3 CMooreXSCSS
11 rintn0 S𝒫XSXS=S
12 9 10 11 syl2anc CMooreXSCSXS=S
13 mreintcl CMooreXSCSSC
14 12 13 eqeltrd CMooreXSCSXSC
15 14 3expa CMooreXSCSXSC
16 5 15 pm2.61dane CMooreXSCXSC