Metamath Proof Explorer


Theorem mulasssr

Description: Multiplication of signed reals is associative. (Contributed by NM, 2-Sep-1995) (Revised by Mario Carneiro, 28-Apr-2015) (New usage is discouraged.)

Ref Expression
Assertion mulasssr A𝑹B𝑹C=A𝑹B𝑹C

Proof

Step Hyp Ref Expression
1 df-nr 𝑹=𝑷×𝑷/~𝑹
2 mulsrpr x𝑷y𝑷z𝑷w𝑷xy~𝑹𝑹zw~𝑹=x𝑷z+𝑷y𝑷wx𝑷w+𝑷y𝑷z~𝑹
3 mulsrpr z𝑷w𝑷v𝑷u𝑷zw~𝑹𝑹vu~𝑹=z𝑷v+𝑷w𝑷uz𝑷u+𝑷w𝑷v~𝑹
4 mulsrpr x𝑷z+𝑷y𝑷w𝑷x𝑷w+𝑷y𝑷z𝑷v𝑷u𝑷x𝑷z+𝑷y𝑷wx𝑷w+𝑷y𝑷z~𝑹𝑹vu~𝑹=x𝑷z+𝑷y𝑷w𝑷v+𝑷x𝑷w+𝑷y𝑷z𝑷ux𝑷z+𝑷y𝑷w𝑷u+𝑷x𝑷w+𝑷y𝑷z𝑷v~𝑹
5 mulsrpr x𝑷y𝑷z𝑷v+𝑷w𝑷u𝑷z𝑷u+𝑷w𝑷v𝑷xy~𝑹𝑹z𝑷v+𝑷w𝑷uz𝑷u+𝑷w𝑷v~𝑹=x𝑷z𝑷v+𝑷w𝑷u+𝑷y𝑷z𝑷u+𝑷w𝑷vx𝑷z𝑷u+𝑷w𝑷v+𝑷y𝑷z𝑷v+𝑷w𝑷u~𝑹
6 mulclpr x𝑷z𝑷x𝑷z𝑷
7 mulclpr y𝑷w𝑷y𝑷w𝑷
8 addclpr x𝑷z𝑷y𝑷w𝑷x𝑷z+𝑷y𝑷w𝑷
9 6 7 8 syl2an x𝑷z𝑷y𝑷w𝑷x𝑷z+𝑷y𝑷w𝑷
10 9 an4s x𝑷y𝑷z𝑷w𝑷x𝑷z+𝑷y𝑷w𝑷
11 mulclpr x𝑷w𝑷x𝑷w𝑷
12 mulclpr y𝑷z𝑷y𝑷z𝑷
13 addclpr x𝑷w𝑷y𝑷z𝑷x𝑷w+𝑷y𝑷z𝑷
14 11 12 13 syl2an x𝑷w𝑷y𝑷z𝑷x𝑷w+𝑷y𝑷z𝑷
15 14 an42s x𝑷y𝑷z𝑷w𝑷x𝑷w+𝑷y𝑷z𝑷
16 10 15 jca x𝑷y𝑷z𝑷w𝑷x𝑷z+𝑷y𝑷w𝑷x𝑷w+𝑷y𝑷z𝑷
17 mulclpr z𝑷v𝑷z𝑷v𝑷
18 mulclpr w𝑷u𝑷w𝑷u𝑷
19 addclpr z𝑷v𝑷w𝑷u𝑷z𝑷v+𝑷w𝑷u𝑷
20 17 18 19 syl2an z𝑷v𝑷w𝑷u𝑷z𝑷v+𝑷w𝑷u𝑷
21 20 an4s z𝑷w𝑷v𝑷u𝑷z𝑷v+𝑷w𝑷u𝑷
22 mulclpr z𝑷u𝑷z𝑷u𝑷
23 mulclpr w𝑷v𝑷w𝑷v𝑷
24 addclpr z𝑷u𝑷w𝑷v𝑷z𝑷u+𝑷w𝑷v𝑷
25 22 23 24 syl2an z𝑷u𝑷w𝑷v𝑷z𝑷u+𝑷w𝑷v𝑷
26 25 an42s z𝑷w𝑷v𝑷u𝑷z𝑷u+𝑷w𝑷v𝑷
27 21 26 jca z𝑷w𝑷v𝑷u𝑷z𝑷v+𝑷w𝑷u𝑷z𝑷u+𝑷w𝑷v𝑷
28 vex xV
29 vex yV
30 vex zV
31 mulcompr f𝑷g=g𝑷f
32 distrpr f𝑷g+𝑷h=f𝑷g+𝑷f𝑷h
33 vex wV
34 vex vV
35 mulasspr f𝑷g𝑷h=f𝑷g𝑷h
36 vex uV
37 addcompr f+𝑷g=g+𝑷f
38 addasspr f+𝑷g+𝑷h=f+𝑷g+𝑷h
39 28 29 30 31 32 33 34 35 36 37 38 caovlem2 x𝑷z+𝑷y𝑷w𝑷v+𝑷x𝑷w+𝑷y𝑷z𝑷u=x𝑷z𝑷v+𝑷w𝑷u+𝑷y𝑷z𝑷u+𝑷w𝑷v
40 28 29 30 31 32 33 36 35 34 37 38 caovlem2 x𝑷z+𝑷y𝑷w𝑷u+𝑷x𝑷w+𝑷y𝑷z𝑷v=x𝑷z𝑷u+𝑷w𝑷v+𝑷y𝑷z𝑷v+𝑷w𝑷u
41 1 2 3 4 5 16 27 39 40 ecovass A𝑹B𝑹C𝑹A𝑹B𝑹C=A𝑹B𝑹C
42 dmmulsr dom𝑹=𝑹×𝑹
43 0nsr ¬𝑹
44 42 43 ndmovass ¬A𝑹B𝑹C𝑹A𝑹B𝑹C=A𝑹B𝑹C
45 41 44 pm2.61i A𝑹B𝑹C=A𝑹B𝑹C