Metamath Proof Explorer


Theorem mulcanpi

Description: Multiplication cancellation law for positive integers. (Contributed by NM, 4-Feb-1996) (Revised by Mario Carneiro, 10-May-2013) (New usage is discouraged.)

Ref Expression
Assertion mulcanpi A𝑵B𝑵A𝑵B=A𝑵CB=C

Proof

Step Hyp Ref Expression
1 mulclpi A𝑵B𝑵A𝑵B𝑵
2 eleq1 A𝑵B=A𝑵CA𝑵B𝑵A𝑵C𝑵
3 1 2 imbitrid A𝑵B=A𝑵CA𝑵B𝑵A𝑵C𝑵
4 3 imp A𝑵B=A𝑵CA𝑵B𝑵A𝑵C𝑵
5 dmmulpi dom𝑵=𝑵×𝑵
6 0npi ¬𝑵
7 5 6 ndmovrcl A𝑵C𝑵A𝑵C𝑵
8 simpr A𝑵C𝑵C𝑵
9 4 7 8 3syl A𝑵B=A𝑵CA𝑵B𝑵C𝑵
10 mulpiord A𝑵B𝑵A𝑵B=A𝑜B
11 10 adantr A𝑵B𝑵C𝑵A𝑵B=A𝑜B
12 mulpiord A𝑵C𝑵A𝑵C=A𝑜C
13 12 adantlr A𝑵B𝑵C𝑵A𝑵C=A𝑜C
14 11 13 eqeq12d A𝑵B𝑵C𝑵A𝑵B=A𝑵CA𝑜B=A𝑜C
15 pinn A𝑵Aω
16 pinn B𝑵Bω
17 pinn C𝑵Cω
18 elni2 A𝑵AωA
19 18 simprbi A𝑵A
20 nnmcan AωBωCωAA𝑜B=A𝑜CB=C
21 20 biimpd AωBωCωAA𝑜B=A𝑜CB=C
22 19 21 sylan2 AωBωCωA𝑵A𝑜B=A𝑜CB=C
23 22 ex AωBωCωA𝑵A𝑜B=A𝑜CB=C
24 15 16 17 23 syl3an A𝑵B𝑵C𝑵A𝑵A𝑜B=A𝑜CB=C
25 24 3exp A𝑵B𝑵C𝑵A𝑵A𝑜B=A𝑜CB=C
26 25 com4r A𝑵A𝑵B𝑵C𝑵A𝑜B=A𝑜CB=C
27 26 pm2.43i A𝑵B𝑵C𝑵A𝑜B=A𝑜CB=C
28 27 imp31 A𝑵B𝑵C𝑵A𝑜B=A𝑜CB=C
29 14 28 sylbid A𝑵B𝑵C𝑵A𝑵B=A𝑵CB=C
30 9 29 sylan2 A𝑵B𝑵A𝑵B=A𝑵CA𝑵B𝑵A𝑵B=A𝑵CB=C
31 30 exp32 A𝑵B𝑵A𝑵B=A𝑵CA𝑵B𝑵A𝑵B=A𝑵CB=C
32 31 imp4b A𝑵B𝑵A𝑵B=A𝑵CA𝑵B𝑵A𝑵B=A𝑵CB=C
33 32 pm2.43i A𝑵B𝑵A𝑵B=A𝑵CB=C
34 33 ex A𝑵B𝑵A𝑵B=A𝑵CB=C
35 oveq2 B=CA𝑵B=A𝑵C
36 34 35 impbid1 A𝑵B𝑵A𝑵B=A𝑵CB=C