| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|
| 2 |
|
distrpr |
|
| 3 |
|
mulcompr |
|
| 4 |
|
mulcompr |
|
| 5 |
|
mulcompr |
|
| 6 |
4 5
|
oveq12i |
|
| 7 |
2 3 6
|
3eqtr4i |
|
| 8 |
|
distrpr |
|
| 9 |
|
mulcompr |
|
| 10 |
|
mulcompr |
|
| 11 |
|
mulcompr |
|
| 12 |
10 11
|
oveq12i |
|
| 13 |
8 9 12
|
3eqtr4i |
|
| 14 |
1 7 13
|
3eqtr3g |
|
| 15 |
14
|
oveq1d |
|
| 16 |
|
addasspr |
|
| 17 |
|
oveq2 |
|
| 18 |
|
distrpr |
|
| 19 |
|
distrpr |
|
| 20 |
17 18 19
|
3eqtr3g |
|
| 21 |
20
|
oveq2d |
|
| 22 |
16 21
|
eqtrid |
|
| 23 |
15 22
|
sylan9eq |
|
| 24 |
|
ovex |
|
| 25 |
|
ovex |
|
| 26 |
|
ovex |
|
| 27 |
|
addcompr |
|
| 28 |
|
addasspr |
|
| 29 |
24 25 26 27 28
|
caov32 |
|
| 30 |
|
ovex |
|
| 31 |
|
ovex |
|
| 32 |
|
ovex |
|
| 33 |
30 31 32 27 28
|
caov12 |
|
| 34 |
23 29 33
|
3eqtr3g |
|
| 35 |
34
|
oveq2d |
|
| 36 |
|
oveq2 |
|
| 37 |
|
distrpr |
|
| 38 |
|
distrpr |
|
| 39 |
36 37 38
|
3eqtr3g |
|
| 40 |
39
|
oveq2d |
|
| 41 |
|
addasspr |
|
| 42 |
40 41
|
eqtr4di |
|
| 43 |
|
oveq1 |
|
| 44 |
|
distrpr |
|
| 45 |
|
mulcompr |
|
| 46 |
|
mulcompr |
|
| 47 |
|
mulcompr |
|
| 48 |
46 47
|
oveq12i |
|
| 49 |
44 45 48
|
3eqtr4i |
|
| 50 |
|
distrpr |
|
| 51 |
|
mulcompr |
|
| 52 |
|
mulcompr |
|
| 53 |
|
mulcompr |
|
| 54 |
52 53
|
oveq12i |
|
| 55 |
50 51 54
|
3eqtr4i |
|
| 56 |
43 49 55
|
3eqtr3g |
|
| 57 |
56
|
oveq1d |
|
| 58 |
42 57
|
sylan9eqr |
|
| 59 |
|
ovex |
|
| 60 |
|
ovex |
|
| 61 |
59 25 60 27 28
|
caov12 |
|
| 62 |
|
ovex |
|
| 63 |
|
ovex |
|
| 64 |
62 31 63 27 28
|
caov32 |
|
| 65 |
58 61 64
|
3eqtr3g |
|
| 66 |
65
|
oveq1d |
|
| 67 |
|
addasspr |
|
| 68 |
66 67
|
eqtrdi |
|
| 69 |
35 68
|
eqtr4d |
|
| 70 |
|
ovex |
|
| 71 |
|
ovex |
|
| 72 |
70 71 25 27 28
|
caov13 |
|
| 73 |
|
addasspr |
|
| 74 |
69 72 73
|
3eqtr3g |
|
| 75 |
24 26 62 27 28 63
|
caov4 |
|
| 76 |
75
|
oveq2i |
|
| 77 |
59 60 30 27 28 32
|
caov42 |
|
| 78 |
77
|
oveq2i |
|
| 79 |
74 76 78
|
3eqtr3g |
|