Metamath Proof Explorer


Theorem muleqadd

Description: Property of numbers whose product equals their sum. Equation 5 of Kreyszig p. 12. (Contributed by NM, 13-Nov-2006)

Ref Expression
Assertion muleqadd ABAB=A+BA1B1=1

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 mulsub A1B1A1B1=AB+11-A1+B1
3 1 2 mpanr2 A1BA1B1=AB+11-A1+B1
4 1 3 mpanl2 ABA1B1=AB+11-A1+B1
5 1 mulridi 11=1
6 5 oveq2i AB+11=AB+1
7 6 a1i ABAB+11=AB+1
8 mulrid AA1=A
9 mulrid BB1=B
10 8 9 oveqan12d ABA1+B1=A+B
11 7 10 oveq12d ABAB+11-A1+B1=AB+1-A+B
12 mulcl ABAB
13 addcl ABA+B
14 addsub AB1A+BAB+1-A+B=AB-A+B+1
15 1 14 mp3an2 ABA+BAB+1-A+B=AB-A+B+1
16 12 13 15 syl2anc ABAB+1-A+B=AB-A+B+1
17 4 11 16 3eqtrd ABA1B1=AB-A+B+1
18 17 eqeq1d ABA1B1=1AB-A+B+1=1
19 12 13 subcld ABABA+B
20 0cn 0
21 addcan2 ABA+B01AB-A+B+1=0+1ABA+B=0
22 20 1 21 mp3an23 ABA+BAB-A+B+1=0+1ABA+B=0
23 19 22 syl ABAB-A+B+1=0+1ABA+B=0
24 1 addlidi 0+1=1
25 24 eqeq2i AB-A+B+1=0+1AB-A+B+1=1
26 23 25 bitr3di ABABA+B=0AB-A+B+1=1
27 12 13 subeq0ad ABABA+B=0AB=A+B
28 18 26 27 3bitr2rd ABAB=A+BA1B1=1