Metamath Proof Explorer


Theorem mulgt1

Description: The product of two numbers greater than 1 is greater than 1. (Contributed by NM, 13-Feb-2005)

Ref Expression
Assertion mulgt1 AB1<A1<B1<AB

Proof

Step Hyp Ref Expression
1 simpl 1<A1<B1<A
2 1 a1i AB1<A1<B1<A
3 0lt1 0<1
4 0re 0
5 1re 1
6 lttr 01A0<11<A0<A
7 4 5 6 mp3an12 A0<11<A0<A
8 3 7 mpani A1<A0<A
9 8 adantr AB1<A0<A
10 ltmul2 1BA0<A1<BA1<AB
11 10 biimpd 1BA0<A1<BA1<AB
12 5 11 mp3an1 BA0<A1<BA1<AB
13 12 exp32 BA0<A1<BA1<AB
14 13 impcom AB0<A1<BA1<AB
15 9 14 syld AB1<A1<BA1<AB
16 15 impd AB1<A1<BA1<AB
17 ax-1rid AA1=A
18 17 adantr ABA1=A
19 18 breq1d ABA1<ABA<AB
20 16 19 sylibd AB1<A1<BA<AB
21 2 20 jcad AB1<A1<B1<AA<AB
22 remulcl ABAB
23 lttr 1AAB1<AA<AB1<AB
24 5 23 mp3an1 AAB1<AA<AB1<AB
25 22 24 syldan AB1<AA<AB1<AB
26 21 25 syld AB1<A1<B1<AB
27 26 imp AB1<A1<B1<AB