Metamath Proof Explorer


Theorem mulresr

Description: Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996) (New usage is discouraged.)

Ref Expression
Assertion mulresr A 𝑹 B 𝑹 A 0 𝑹 B 0 𝑹 = A 𝑹 B 0 𝑹

Proof

Step Hyp Ref Expression
1 0r 0 𝑹 𝑹
2 mulcnsr A 𝑹 0 𝑹 𝑹 B 𝑹 0 𝑹 𝑹 A 0 𝑹 B 0 𝑹 = A 𝑹 B + 𝑹 -1 𝑹 𝑹 0 𝑹 𝑹 0 𝑹 0 𝑹 𝑹 B + 𝑹 A 𝑹 0 𝑹
3 2 an4s A 𝑹 B 𝑹 0 𝑹 𝑹 0 𝑹 𝑹 A 0 𝑹 B 0 𝑹 = A 𝑹 B + 𝑹 -1 𝑹 𝑹 0 𝑹 𝑹 0 𝑹 0 𝑹 𝑹 B + 𝑹 A 𝑹 0 𝑹
4 1 1 3 mpanr12 A 𝑹 B 𝑹 A 0 𝑹 B 0 𝑹 = A 𝑹 B + 𝑹 -1 𝑹 𝑹 0 𝑹 𝑹 0 𝑹 0 𝑹 𝑹 B + 𝑹 A 𝑹 0 𝑹
5 00sr 0 𝑹 𝑹 0 𝑹 𝑹 0 𝑹 = 0 𝑹
6 1 5 ax-mp 0 𝑹 𝑹 0 𝑹 = 0 𝑹
7 6 oveq2i -1 𝑹 𝑹 0 𝑹 𝑹 0 𝑹 = -1 𝑹 𝑹 0 𝑹
8 m1r -1 𝑹 𝑹
9 00sr -1 𝑹 𝑹 -1 𝑹 𝑹 0 𝑹 = 0 𝑹
10 8 9 ax-mp -1 𝑹 𝑹 0 𝑹 = 0 𝑹
11 7 10 eqtri -1 𝑹 𝑹 0 𝑹 𝑹 0 𝑹 = 0 𝑹
12 11 oveq2i A 𝑹 B + 𝑹 -1 𝑹 𝑹 0 𝑹 𝑹 0 𝑹 = A 𝑹 B + 𝑹 0 𝑹
13 mulclsr A 𝑹 B 𝑹 A 𝑹 B 𝑹
14 0idsr A 𝑹 B 𝑹 A 𝑹 B + 𝑹 0 𝑹 = A 𝑹 B
15 13 14 syl A 𝑹 B 𝑹 A 𝑹 B + 𝑹 0 𝑹 = A 𝑹 B
16 12 15 syl5eq A 𝑹 B 𝑹 A 𝑹 B + 𝑹 -1 𝑹 𝑹 0 𝑹 𝑹 0 𝑹 = A 𝑹 B
17 mulcomsr 0 𝑹 𝑹 B = B 𝑹 0 𝑹
18 00sr B 𝑹 B 𝑹 0 𝑹 = 0 𝑹
19 17 18 syl5eq B 𝑹 0 𝑹 𝑹 B = 0 𝑹
20 00sr A 𝑹 A 𝑹 0 𝑹 = 0 𝑹
21 19 20 oveqan12rd A 𝑹 B 𝑹 0 𝑹 𝑹 B + 𝑹 A 𝑹 0 𝑹 = 0 𝑹 + 𝑹 0 𝑹
22 0idsr 0 𝑹 𝑹 0 𝑹 + 𝑹 0 𝑹 = 0 𝑹
23 1 22 ax-mp 0 𝑹 + 𝑹 0 𝑹 = 0 𝑹
24 21 23 eqtrdi A 𝑹 B 𝑹 0 𝑹 𝑹 B + 𝑹 A 𝑹 0 𝑹 = 0 𝑹
25 16 24 opeq12d A 𝑹 B 𝑹 A 𝑹 B + 𝑹 -1 𝑹 𝑹 0 𝑹 𝑹 0 𝑹 0 𝑹 𝑹 B + 𝑹 A 𝑹 0 𝑹 = A 𝑹 B 0 𝑹
26 4 25 eqtrd A 𝑹 B 𝑹 A 0 𝑹 B 0 𝑹 = A 𝑹 B 0 𝑹