Metamath Proof Explorer


Theorem mulresr

Description: Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996) (New usage is discouraged.)

Ref Expression
Assertion mulresr A𝑹B𝑹A0𝑹B0𝑹=A𝑹B0𝑹

Proof

Step Hyp Ref Expression
1 0r 0𝑹𝑹
2 mulcnsr A𝑹0𝑹𝑹B𝑹0𝑹𝑹A0𝑹B0𝑹=A𝑹B+𝑹-1𝑹𝑹0𝑹𝑹0𝑹0𝑹𝑹B+𝑹A𝑹0𝑹
3 2 an4s A𝑹B𝑹0𝑹𝑹0𝑹𝑹A0𝑹B0𝑹=A𝑹B+𝑹-1𝑹𝑹0𝑹𝑹0𝑹0𝑹𝑹B+𝑹A𝑹0𝑹
4 1 1 3 mpanr12 A𝑹B𝑹A0𝑹B0𝑹=A𝑹B+𝑹-1𝑹𝑹0𝑹𝑹0𝑹0𝑹𝑹B+𝑹A𝑹0𝑹
5 00sr 0𝑹𝑹0𝑹𝑹0𝑹=0𝑹
6 1 5 ax-mp 0𝑹𝑹0𝑹=0𝑹
7 6 oveq2i -1𝑹𝑹0𝑹𝑹0𝑹=-1𝑹𝑹0𝑹
8 m1r -1𝑹𝑹
9 00sr -1𝑹𝑹-1𝑹𝑹0𝑹=0𝑹
10 8 9 ax-mp -1𝑹𝑹0𝑹=0𝑹
11 7 10 eqtri -1𝑹𝑹0𝑹𝑹0𝑹=0𝑹
12 11 oveq2i A𝑹B+𝑹-1𝑹𝑹0𝑹𝑹0𝑹=A𝑹B+𝑹0𝑹
13 mulclsr A𝑹B𝑹A𝑹B𝑹
14 0idsr A𝑹B𝑹A𝑹B+𝑹0𝑹=A𝑹B
15 13 14 syl A𝑹B𝑹A𝑹B+𝑹0𝑹=A𝑹B
16 12 15 eqtrid A𝑹B𝑹A𝑹B+𝑹-1𝑹𝑹0𝑹𝑹0𝑹=A𝑹B
17 mulcomsr 0𝑹𝑹B=B𝑹0𝑹
18 00sr B𝑹B𝑹0𝑹=0𝑹
19 17 18 eqtrid B𝑹0𝑹𝑹B=0𝑹
20 00sr A𝑹A𝑹0𝑹=0𝑹
21 19 20 oveqan12rd A𝑹B𝑹0𝑹𝑹B+𝑹A𝑹0𝑹=0𝑹+𝑹0𝑹
22 0idsr 0𝑹𝑹0𝑹+𝑹0𝑹=0𝑹
23 1 22 ax-mp 0𝑹+𝑹0𝑹=0𝑹
24 21 23 eqtrdi A𝑹B𝑹0𝑹𝑹B+𝑹A𝑹0𝑹=0𝑹
25 16 24 opeq12d A𝑹B𝑹A𝑹B+𝑹-1𝑹𝑹0𝑹𝑹0𝑹0𝑹𝑹B+𝑹A𝑹0𝑹=A𝑹B0𝑹
26 4 25 eqtrd A𝑹B𝑹A0𝑹B0𝑹=A𝑹B0𝑹