Metamath Proof Explorer


Theorem mzpcl1

Description: Defining property 1 of a polynomially closed function set P : it contains all constant functions. (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion mzpcl1 PmzPolyCldVFV×FP

Proof

Step Hyp Ref Expression
1 simpr PmzPolyCldVFF
2 simpl PmzPolyCldVFPmzPolyCldV
3 elfvex PmzPolyCldVVV
4 3 adantr PmzPolyCldVFVV
5 elmzpcl VVPmzPolyCldVPVfV×fPfVgVgfPfPgPf+fgPf×fgP
6 4 5 syl PmzPolyCldVFPmzPolyCldVPVfV×fPfVgVgfPfPgPf+fgPf×fgP
7 2 6 mpbid PmzPolyCldVFPVfV×fPfVgVgfPfPgPf+fgPf×fgP
8 simprll PVfV×fPfVgVgfPfPgPf+fgPf×fgPfV×fP
9 7 8 syl PmzPolyCldVFfV×fP
10 sneq f=Ff=F
11 10 xpeq2d f=FV×f=V×F
12 11 eleq1d f=FV×fPV×FP
13 12 rspcva FfV×fPV×FP
14 1 9 13 syl2anc PmzPolyCldVFV×FP