Metamath Proof Explorer


Theorem mzprename

Description: Simplified version of mzpsubst to simply relabel variables in a polynomial. (Contributed by Stefan O'Rear, 5-Oct-2014)

Ref Expression
Assertion mzprename WVFmzPolyVR:VWxWFxRmzPolyW

Proof

Step Hyp Ref Expression
1 simpr WVR:VWxWxW
2 zex V
3 simpll WVR:VWxWWV
4 elmapg VWVxWx:W
5 2 3 4 sylancr WVR:VWxWxWx:W
6 1 5 mpbid WVR:VWxWx:W
7 simplr WVR:VWxWR:VW
8 fcompt x:WR:VWxR=aVxRa
9 6 7 8 syl2anc WVR:VWxWxR=aVxRa
10 fveq1 b=xbRa=xRa
11 eqid bWbRa=bWbRa
12 fvex xRaV
13 10 11 12 fvmpt xWbWbRax=xRa
14 13 ad2antlr WVR:VWxWaVbWbRax=xRa
15 14 eqcomd WVR:VWxWaVxRa=bWbRax
16 15 mpteq2dva WVR:VWxWaVxRa=aVbWbRax
17 9 16 eqtrd WVR:VWxWxR=aVbWbRax
18 17 fveq2d WVR:VWxWFxR=FaVbWbRax
19 18 mpteq2dva WVR:VWxWFxR=xWFaVbWbRax
20 19 3adant2 WVFmzPolyVR:VWxWFxR=xWFaVbWbRax
21 simpl1 WVFmzPolyVR:VWaVWV
22 ffvelcdm R:VWaVRaW
23 22 3ad2antl3 WVFmzPolyVR:VWaVRaW
24 mzpproj WVRaWbWbRamzPolyW
25 21 23 24 syl2anc WVFmzPolyVR:VWaVbWbRamzPolyW
26 25 ralrimiva WVFmzPolyVR:VWaVbWbRamzPolyW
27 mzpsubst WVFmzPolyVaVbWbRamzPolyWxWFaVbWbRaxmzPolyW
28 26 27 syld3an3 WVFmzPolyVR:VWxWFaVbWbRaxmzPolyW
29 20 28 eqeltrd WVFmzPolyVR:VWxWFxRmzPolyW