Metamath Proof Explorer


Theorem natlocalincr

Description: Global monotonicity on half-open range implies local monotonicity. Inference form. (Contributed by Ender Ting, 22-Nov-2024)

Ref Expression
Hypothesis natlocalincr.1 k0..^Tt1..^T+1k<tBk<Bt
Assertion natlocalincr k0..^TBk<Bk+1

Proof

Step Hyp Ref Expression
1 natlocalincr.1 k0..^Tt1..^T+1k<tBk<Bt
2 ovex k+1V
3 2 isseti tt=k+1
4 rsp t1..^T+1k<tBk<Btt1..^T+1k<tBk<Bt
5 4 ralimi k0..^Tt1..^T+1k<tBk<Btk0..^Tt1..^T+1k<tBk<Bt
6 1z 1
7 fzoaddel k0..^T1k+10+1..^T+1
8 6 7 mpan2 k0..^Tk+10+1..^T+1
9 0p1e1 0+1=1
10 9 oveq1i 0+1..^T+1=1..^T+1
11 8 10 eleqtrdi k0..^Tk+11..^T+1
12 eleq1 t=k+1t1..^T+1k+11..^T+1
13 11 12 syl5ibrcom k0..^Tt=k+1t1..^T+1
14 13 imim1d k0..^Tt1..^T+1k<tBk<Btt=k+1k<tBk<Bt
15 14 ralimia k0..^Tt1..^T+1k<tBk<Btk0..^Tt=k+1k<tBk<Bt
16 1 5 15 mp2b k0..^Tt=k+1k<tBk<Bt
17 elfzoelz k0..^Tk
18 zre kk
19 ltp1 kk<k+1
20 17 18 19 3syl k0..^Tk<k+1
21 breq2 t=k+1k<tk<k+1
22 20 21 syl5ibrcom k0..^Tt=k+1k<t
23 ax-2 t=k+1k<tBk<Btt=k+1k<tt=k+1Bk<Bt
24 22 23 syl5com k0..^Tt=k+1k<tBk<Btt=k+1Bk<Bt
25 24 ralimia k0..^Tt=k+1k<tBk<Btk0..^Tt=k+1Bk<Bt
26 fveq2 t=k+1Bt=Bk+1
27 26 breq2d t=k+1Bk<BtBk<Bk+1
28 27 biimpd t=k+1Bk<BtBk<Bk+1
29 28 a2i t=k+1Bk<Btt=k+1Bk<Bk+1
30 29 ralimi k0..^Tt=k+1Bk<Btk0..^Tt=k+1Bk<Bk+1
31 16 25 30 mp2b k0..^Tt=k+1Bk<Bk+1
32 31 rspec k0..^Tt=k+1Bk<Bk+1
33 32 eximdv k0..^Ttt=k+1tBk<Bk+1
34 3 33 mpi k0..^TtBk<Bk+1
35 ax5e tBk<Bk+1Bk<Bk+1
36 34 35 syl k0..^TBk<Bk+1
37 36 rgen k0..^TBk<Bk+1