Description: Global monotonicity on half-open range implies local monotonicity. Inference form. (Contributed by Ender Ting, 22-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | natlocalincr.1 | |
|
Assertion | natlocalincr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | natlocalincr.1 | |
|
2 | ovex | |
|
3 | 2 | isseti | |
4 | rsp | |
|
5 | 4 | ralimi | |
6 | 1z | |
|
7 | fzoaddel | |
|
8 | 6 7 | mpan2 | |
9 | 0p1e1 | |
|
10 | 9 | oveq1i | |
11 | 8 10 | eleqtrdi | |
12 | eleq1 | |
|
13 | 11 12 | syl5ibrcom | |
14 | 13 | imim1d | |
15 | 14 | ralimia | |
16 | 1 5 15 | mp2b | |
17 | elfzoelz | |
|
18 | zre | |
|
19 | ltp1 | |
|
20 | 17 18 19 | 3syl | |
21 | breq2 | |
|
22 | 20 21 | syl5ibrcom | |
23 | ax-2 | |
|
24 | 22 23 | syl5com | |
25 | 24 | ralimia | |
26 | fveq2 | |
|
27 | 26 | breq2d | |
28 | 27 | biimpd | |
29 | 28 | a2i | |
30 | 29 | ralimi | |
31 | 16 25 30 | mp2b | |
32 | 31 | rspec | |
33 | 32 | eximdv | |
34 | 3 33 | mpi | |
35 | ax5e | |
|
36 | 34 35 | syl | |
37 | 36 | rgen | |