Metamath Proof Explorer


Theorem nbfusgrlevtxm1

Description: The number of neighbors of a vertex is at most the number of vertices of the graph minus 1 in a finite simple graph. (Contributed by AV, 16-Dec-2020) (Proof shortened by AV, 13-Feb-2022)

Ref Expression
Hypothesis hashnbusgrnn0.v V=VtxG
Assertion nbfusgrlevtxm1 GFinUSGraphUVGNeighbVtxUV1

Proof

Step Hyp Ref Expression
1 hashnbusgrnn0.v V=VtxG
2 1 fvexi VV
3 2 difexi VUV
4 1 nbgrssovtx GNeighbVtxUVU
5 4 a1i GFinUSGraphUVGNeighbVtxUVU
6 hashss VUVGNeighbVtxUVUGNeighbVtxUVU
7 3 5 6 sylancr GFinUSGraphUVGNeighbVtxUVU
8 1 fusgrvtxfi GFinUSGraphVFin
9 hashdifsn VFinUVVU=V1
10 9 eqcomd VFinUVV1=VU
11 8 10 sylan GFinUSGraphUVV1=VU
12 7 11 breqtrrd GFinUSGraphUVGNeighbVtxUV1