Metamath Proof Explorer


Theorem nbfusgrlevtxm2

Description: If there is a vertex which is not a neighbor of another vertex, the number of neighbors of the other vertex is at most the number of vertices of the graph minus 2 in a finite simple graph. (Contributed by AV, 16-Dec-2020) (Proof shortened by AV, 13-Feb-2022)

Ref Expression
Hypothesis hashnbusgrnn0.v V=VtxG
Assertion nbfusgrlevtxm2 GFinUSGraphUVMVMUMGNeighbVtxUGNeighbVtxUV2

Proof

Step Hyp Ref Expression
1 hashnbusgrnn0.v V=VtxG
2 1 fvexi VV
3 difexg VVVMUV
4 2 3 mp1i GFinUSGraphUVMVMUMGNeighbVtxUVMUV
5 simpr3 GFinUSGraphUVMVMUMGNeighbVtxUMGNeighbVtxU
6 1 nbgrssvwo2 MGNeighbVtxUGNeighbVtxUVMU
7 5 6 syl GFinUSGraphUVMVMUMGNeighbVtxUGNeighbVtxUVMU
8 hashss VMUVGNeighbVtxUVMUGNeighbVtxUVMU
9 4 7 8 syl2anc GFinUSGraphUVMVMUMGNeighbVtxUGNeighbVtxUVMU
10 1 fusgrvtxfi GFinUSGraphVFin
11 10 ad2antrr GFinUSGraphUVMVMUMGNeighbVtxUVFin
12 simpr1 GFinUSGraphUVMVMUMGNeighbVtxUMV
13 simplr GFinUSGraphUVMVMUMGNeighbVtxUUV
14 simpr2 GFinUSGraphUVMVMUMGNeighbVtxUMU
15 hashdifpr VFinMVUVMUVMU=V2
16 11 12 13 14 15 syl13anc GFinUSGraphUVMVMUMGNeighbVtxUVMU=V2
17 9 16 breqtrd GFinUSGraphUVMVMUMGNeighbVtxUGNeighbVtxUV2