Metamath Proof Explorer


Theorem ncvsi

Description: The properties of a normed subcomplex vector space, which is a vector space accompanied by a norm. (Contributed by NM, 11-Nov-2006) (Revised by AV, 7-Oct-2021)

Ref Expression
Hypotheses isncvsngp.v V=BaseW
isncvsngp.n N=normW
isncvsngp.s ·˙=W
isncvsngp.f F=ScalarW
isncvsngp.k K=BaseF
ncvsi.m -˙=-W
ncvsi.0 0˙=0W
Assertion ncvsi WNrmVecℂVecWℂVecN:VxVNx=0x=0˙yVNx-˙yNx+NykKNk·˙x=kNx

Proof

Step Hyp Ref Expression
1 isncvsngp.v V=BaseW
2 isncvsngp.n N=normW
3 isncvsngp.s ·˙=W
4 isncvsngp.f F=ScalarW
5 isncvsngp.k K=BaseF
6 ncvsi.m -˙=-W
7 ncvsi.0 0˙=0W
8 1 2 3 4 5 isncvsngp WNrmVecℂVecWℂVecWNrmGrpxVkKNk·˙x=kNx
9 simp1 WℂVecWNrmGrpxVkKNk·˙x=kNxWℂVec
10 1 2 nmf WNrmGrpN:V
11 10 3ad2ant2 WℂVecWNrmGrpxVkKNk·˙x=kNxN:V
12 1 2 6 7 ngpi WNrmGrpWGrpN:VxVNx=0x=0˙yVNx-˙yNx+Ny
13 r19.26 xVNx=0x=0˙yVNx-˙yNx+NykKNk·˙x=kNxxVNx=0x=0˙yVNx-˙yNx+NyxVkKNk·˙x=kNx
14 simpll Nx=0x=0˙yVNx-˙yNx+NykKNk·˙x=kNxNx=0x=0˙
15 simplr Nx=0x=0˙yVNx-˙yNx+NykKNk·˙x=kNxyVNx-˙yNx+Ny
16 simpr Nx=0x=0˙yVNx-˙yNx+NykKNk·˙x=kNxkKNk·˙x=kNx
17 14 15 16 3jca Nx=0x=0˙yVNx-˙yNx+NykKNk·˙x=kNxNx=0x=0˙yVNx-˙yNx+NykKNk·˙x=kNx
18 17 ralimi xVNx=0x=0˙yVNx-˙yNx+NykKNk·˙x=kNxxVNx=0x=0˙yVNx-˙yNx+NykKNk·˙x=kNx
19 13 18 sylbir xVNx=0x=0˙yVNx-˙yNx+NyxVkKNk·˙x=kNxxVNx=0x=0˙yVNx-˙yNx+NykKNk·˙x=kNx
20 19 ex xVNx=0x=0˙yVNx-˙yNx+NyxVkKNk·˙x=kNxxVNx=0x=0˙yVNx-˙yNx+NykKNk·˙x=kNx
21 20 3ad2ant3 WGrpN:VxVNx=0x=0˙yVNx-˙yNx+NyxVkKNk·˙x=kNxxVNx=0x=0˙yVNx-˙yNx+NykKNk·˙x=kNx
22 12 21 syl WNrmGrpxVkKNk·˙x=kNxxVNx=0x=0˙yVNx-˙yNx+NykKNk·˙x=kNx
23 22 imp WNrmGrpxVkKNk·˙x=kNxxVNx=0x=0˙yVNx-˙yNx+NykKNk·˙x=kNx
24 23 3adant1 WℂVecWNrmGrpxVkKNk·˙x=kNxxVNx=0x=0˙yVNx-˙yNx+NykKNk·˙x=kNx
25 9 11 24 3jca WℂVecWNrmGrpxVkKNk·˙x=kNxWℂVecN:VxVNx=0x=0˙yVNx-˙yNx+NykKNk·˙x=kNx
26 8 25 sylbi WNrmVecℂVecWℂVecN:VxVNx=0x=0˙yVNx-˙yNx+NykKNk·˙x=kNx