Metamath Proof Explorer


Theorem negf1o

Description: Negation is an isomorphism of a subset of the real numbers to the negated elements of the subset. (Contributed by AV, 9-Aug-2020)

Ref Expression
Hypothesis negf1o.1 F = x A x
Assertion negf1o A F : A 1-1 onto n | n A

Proof

Step Hyp Ref Expression
1 negf1o.1 F = x A x
2 negeq n = x n = x
3 2 eleq1d n = x n A x A
4 ssel A x A x
5 renegcl x x
6 4 5 syl6 A x A x
7 6 imp A x A x
8 4 imp A x A x
9 recn x x
10 negneg x x = x
11 10 eqcomd x x = x
12 9 11 syl x x = x
13 12 eleq1d x x A x A
14 13 biimpcd x A x x A
15 14 adantl A x A x x A
16 8 15 mpd A x A x A
17 3 7 16 elrabd A x A x n | n A
18 negeq n = y n = y
19 18 eleq1d n = y n A y A
20 19 elrab y n | n A y y A
21 simpr y y A y A
22 21 a1i A y y A y A
23 20 22 syl5bi A y n | n A y A
24 23 imp A y n | n A y A
25 4 9 syl6com x A A x
26 25 adantl y y A x A A x
27 26 imp y y A x A A x
28 recn y y
29 28 ad3antrrr y y A x A A y
30 negcon2 x y x = y y = x
31 27 29 30 syl2anc y y A x A A x = y y = x
32 31 exp31 y y A x A A x = y y = x
33 20 32 sylbi y n | n A x A A x = y y = x
34 33 impcom x A y n | n A A x = y y = x
35 34 impcom A x A y n | n A x = y y = x
36 1 17 24 35 f1o2d A F : A 1-1 onto n | n A