Description: Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | negiso.1 | |
|
Assertion | negiso | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negiso.1 | |
|
2 | simpr | |
|
3 | 2 | renegcld | |
4 | simpr | |
|
5 | 4 | renegcld | |
6 | recn | |
|
7 | recn | |
|
8 | negcon2 | |
|
9 | 6 7 8 | syl2an | |
10 | 9 | adantl | |
11 | 1 3 5 10 | f1ocnv2d | |
12 | 11 | mptru | |
13 | 12 | simpli | |
14 | ltneg | |
|
15 | negex | |
|
16 | negex | |
|
17 | 15 16 | brcnv | |
18 | 14 17 | bitr4di | |
19 | negeq | |
|
20 | 19 1 15 | fvmpt | |
21 | negeq | |
|
22 | 21 1 16 | fvmpt | |
23 | 20 22 | breqan12d | |
24 | 18 23 | bitr4d | |
25 | 24 | rgen2 | |
26 | df-isom | |
|
27 | 13 25 26 | mpbir2an | |
28 | negeq | |
|
29 | 28 | cbvmptv | |
30 | 12 | simpri | |
31 | 29 30 1 | 3eqtr4i | |
32 | 27 31 | pm3.2i | |