Metamath Proof Explorer


Theorem negiso

Description: Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Hypothesis negiso.1 F=xx
Assertion negiso FIsom<,<-1F-1=F

Proof

Step Hyp Ref Expression
1 negiso.1 F=xx
2 simpr xx
3 2 renegcld xx
4 simpr yy
5 4 renegcld yy
6 recn xx
7 recn yy
8 negcon2 xyx=yy=x
9 6 7 8 syl2an xyx=yy=x
10 9 adantl xyx=yy=x
11 1 3 5 10 f1ocnv2d F:1-1 ontoF-1=yy
12 11 mptru F:1-1 ontoF-1=yy
13 12 simpli F:1-1 onto
14 ltneg zyz<yy<z
15 negex zV
16 negex yV
17 15 16 brcnv z<-1yy<z
18 14 17 bitr4di zyz<yz<-1y
19 negeq x=zx=z
20 19 1 15 fvmpt zFz=z
21 negeq x=yx=y
22 21 1 16 fvmpt yFy=y
23 20 22 breqan12d zyFz<-1Fyz<-1y
24 18 23 bitr4d zyz<yFz<-1Fy
25 24 rgen2 zyz<yFz<-1Fy
26 df-isom FIsom<,<-1F:1-1 ontozyz<yFz<-1Fy
27 13 25 26 mpbir2an FIsom<,<-1
28 negeq y=xy=x
29 28 cbvmptv yy=xx
30 12 simpri F-1=yy
31 29 30 1 3eqtr4i F-1=F
32 27 31 pm3.2i FIsom<,<-1F-1=F