Metamath Proof Explorer


Theorem nepss

Description: Two classes are unequal iff their intersection is a proper subset of one of them. (Contributed by Scott Fenton, 23-Feb-2011)

Ref Expression
Assertion nepss A B A B A A B B

Proof

Step Hyp Ref Expression
1 nne ¬ A B A A B = A
2 neeq1 A B = A A B B A B
3 2 biimprcd A B A B = A A B B
4 1 3 syl5bi A B ¬ A B A A B B
5 4 orrd A B A B A A B B
6 inss1 A B A
7 6 jctl A B A A B A A B A
8 inss2 A B B
9 8 jctl A B B A B B A B B
10 7 9 orim12i A B A A B B A B A A B A A B B A B B
11 5 10 syl A B A B A A B A A B B A B B
12 inidm A A = A
13 ineq2 A = B A A = A B
14 12 13 syl5reqr A = B A B = A
15 14 necon3i A B A A B
16 15 adantl A B A A B A A B
17 ineq1 A = B A B = B B
18 inidm B B = B
19 17 18 eqtrdi A = B A B = B
20 19 necon3i A B B A B
21 20 adantl A B B A B B A B
22 16 21 jaoi A B A A B A A B B A B B A B
23 11 22 impbii A B A B A A B A A B B A B B
24 df-pss A B A A B A A B A
25 df-pss A B B A B B A B B
26 24 25 orbi12i A B A A B B A B A A B A A B B A B B
27 23 26 bitr4i A B A B A A B B