Metamath Proof Explorer


Theorem nerabdioph

Description: Diophantine set builder for inequality. This not quite trivial theorem touches on something important; Diophantine sets are not closed under negation, but they contain an important subclass that is, namely the recursive sets. With this theorem and De Morgan's laws, all quantifier-free formulas can be negated. (Contributed by Stefan O'Rear, 11-Oct-2014)

Ref Expression
Assertion nerabdioph N0t1NAmzPoly1Nt1NBmzPoly1Nt01N|ABDiophN

Proof

Step Hyp Ref Expression
1 rabdiophlem1 t1NAmzPoly1Nt01NA
2 rabdiophlem1 t1NBmzPoly1Nt01NB
3 zre AA
4 zre BB
5 lttri2 ABABA<BB<A
6 3 4 5 syl2an ABABA<BB<A
7 6 ralimi t01NABt01NABA<BB<A
8 r19.26 t01NABt01NAt01NB
9 rabbi t01NABA<BB<At01N|AB=t01N|A<BB<A
10 7 8 9 3imtr3i t01NAt01NBt01N|AB=t01N|A<BB<A
11 1 2 10 syl2an t1NAmzPoly1Nt1NBmzPoly1Nt01N|AB=t01N|A<BB<A
12 11 3adant1 N0t1NAmzPoly1Nt1NBmzPoly1Nt01N|AB=t01N|A<BB<A
13 ltrabdioph N0t1NAmzPoly1Nt1NBmzPoly1Nt01N|A<BDiophN
14 ltrabdioph N0t1NBmzPoly1Nt1NAmzPoly1Nt01N|B<ADiophN
15 14 3com23 N0t1NAmzPoly1Nt1NBmzPoly1Nt01N|B<ADiophN
16 orrabdioph t01N|A<BDiophNt01N|B<ADiophNt01N|A<BB<ADiophN
17 13 15 16 syl2anc N0t1NAmzPoly1Nt1NBmzPoly1Nt01N|A<BB<ADiophN
18 12 17 eqeltrd N0t1NAmzPoly1Nt1NBmzPoly1Nt01N|ABDiophN