Metamath Proof Explorer


Theorem nerabdioph

Description: Diophantine set builder for inequality. This not quite trivial theorem touches on something important; Diophantine sets are not closed under negation, but they contain an important subclass that is, namely the recursive sets. With this theorem and De Morgan's laws, all quantifier-free formulas can be negated. (Contributed by Stefan O'Rear, 11-Oct-2014)

Ref Expression
Assertion nerabdioph N 0 t 1 N A mzPoly 1 N t 1 N B mzPoly 1 N t 0 1 N | A B Dioph N

Proof

Step Hyp Ref Expression
1 rabdiophlem1 t 1 N A mzPoly 1 N t 0 1 N A
2 rabdiophlem1 t 1 N B mzPoly 1 N t 0 1 N B
3 zre A A
4 zre B B
5 lttri2 A B A B A < B B < A
6 3 4 5 syl2an A B A B A < B B < A
7 6 ralimi t 0 1 N A B t 0 1 N A B A < B B < A
8 r19.26 t 0 1 N A B t 0 1 N A t 0 1 N B
9 rabbi t 0 1 N A B A < B B < A t 0 1 N | A B = t 0 1 N | A < B B < A
10 7 8 9 3imtr3i t 0 1 N A t 0 1 N B t 0 1 N | A B = t 0 1 N | A < B B < A
11 1 2 10 syl2an t 1 N A mzPoly 1 N t 1 N B mzPoly 1 N t 0 1 N | A B = t 0 1 N | A < B B < A
12 11 3adant1 N 0 t 1 N A mzPoly 1 N t 1 N B mzPoly 1 N t 0 1 N | A B = t 0 1 N | A < B B < A
13 ltrabdioph N 0 t 1 N A mzPoly 1 N t 1 N B mzPoly 1 N t 0 1 N | A < B Dioph N
14 ltrabdioph N 0 t 1 N B mzPoly 1 N t 1 N A mzPoly 1 N t 0 1 N | B < A Dioph N
15 14 3com23 N 0 t 1 N A mzPoly 1 N t 1 N B mzPoly 1 N t 0 1 N | B < A Dioph N
16 orrabdioph t 0 1 N | A < B Dioph N t 0 1 N | B < A Dioph N t 0 1 N | A < B B < A Dioph N
17 13 15 16 syl2anc N 0 t 1 N A mzPoly 1 N t 1 N B mzPoly 1 N t 0 1 N | A < B B < A Dioph N
18 12 17 eqeltrd N 0 t 1 N A mzPoly 1 N t 1 N B mzPoly 1 N t 0 1 N | A B Dioph N