| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rabdiophlem1 |
|
| 2 |
|
rabdiophlem1 |
|
| 3 |
|
divides |
|
| 4 |
|
oveq1 |
|
| 5 |
4
|
eqeq1d |
|
| 6 |
|
oveq1 |
|
| 7 |
6
|
eqeq1d |
|
| 8 |
5 7
|
rexzrexnn0 |
|
| 9 |
3 8
|
bitrdi |
|
| 10 |
9
|
ralimi |
|
| 11 |
|
r19.26 |
|
| 12 |
|
rabbi |
|
| 13 |
10 11 12
|
3imtr3i |
|
| 14 |
1 2 13
|
syl2an |
|
| 15 |
14
|
3adant1 |
|
| 16 |
|
nfcv |
|
| 17 |
|
nfcv |
|
| 18 |
|
nfv |
|
| 19 |
|
nfcv |
|
| 20 |
|
nfcv |
|
| 21 |
|
nfcv |
|
| 22 |
|
nfcsb1v |
|
| 23 |
20 21 22
|
nfov |
|
| 24 |
|
nfcsb1v |
|
| 25 |
23 24
|
nfeq |
|
| 26 |
|
nfcv |
|
| 27 |
26 21 22
|
nfov |
|
| 28 |
27 24
|
nfeq |
|
| 29 |
25 28
|
nfor |
|
| 30 |
19 29
|
nfrexw |
|
| 31 |
|
csbeq1a |
|
| 32 |
31
|
oveq2d |
|
| 33 |
|
csbeq1a |
|
| 34 |
32 33
|
eqeq12d |
|
| 35 |
31
|
oveq2d |
|
| 36 |
35 33
|
eqeq12d |
|
| 37 |
34 36
|
orbi12d |
|
| 38 |
37
|
rexbidv |
|
| 39 |
16 17 18 30 38
|
cbvrabw |
|
| 40 |
|
simp1 |
|
| 41 |
|
peano2nn0 |
|
| 42 |
41
|
3ad2ant1 |
|
| 43 |
|
ovex |
|
| 44 |
|
nn0p1nn |
|
| 45 |
|
elfz1end |
|
| 46 |
44 45
|
sylib |
|
| 47 |
|
mzpproj |
|
| 48 |
43 46 47
|
sylancr |
|
| 49 |
48
|
adantr |
|
| 50 |
|
eqid |
|
| 51 |
50
|
rabdiophlem2 |
|
| 52 |
|
mzpmulmpt |
|
| 53 |
49 51 52
|
syl2anc |
|
| 54 |
53
|
3adant3 |
|
| 55 |
50
|
rabdiophlem2 |
|
| 56 |
55
|
3adant2 |
|
| 57 |
|
eqrabdioph |
|
| 58 |
42 54 56 57
|
syl3anc |
|
| 59 |
|
mzpnegmpt |
|
| 60 |
49 59
|
syl |
|
| 61 |
|
mzpmulmpt |
|
| 62 |
60 51 61
|
syl2anc |
|
| 63 |
62
|
3adant3 |
|
| 64 |
|
eqrabdioph |
|
| 65 |
42 63 56 64
|
syl3anc |
|
| 66 |
|
orrabdioph |
|
| 67 |
58 65 66
|
syl2anc |
|
| 68 |
|
oveq1 |
|
| 69 |
68
|
eqeq1d |
|
| 70 |
|
negeq |
|
| 71 |
70
|
oveq1d |
|
| 72 |
71
|
eqeq1d |
|
| 73 |
69 72
|
orbi12d |
|
| 74 |
|
csbeq1 |
|
| 75 |
74
|
oveq2d |
|
| 76 |
|
csbeq1 |
|
| 77 |
75 76
|
eqeq12d |
|
| 78 |
74
|
oveq2d |
|
| 79 |
78 76
|
eqeq12d |
|
| 80 |
77 79
|
orbi12d |
|
| 81 |
50 73 80
|
rexrabdioph |
|
| 82 |
40 67 81
|
syl2anc |
|
| 83 |
39 82
|
eqeltrid |
|
| 84 |
15 83
|
eqeltrd |
|