Metamath Proof Explorer


Theorem dvdsrabdioph

Description: Divisibility is a Diophantine relation. (Contributed by Stefan O'Rear, 11-Oct-2014)

Ref Expression
Assertion dvdsrabdioph N0t1NAmzPoly1Nt1NBmzPoly1Nt01N|ABDiophN

Proof

Step Hyp Ref Expression
1 rabdiophlem1 t1NAmzPoly1Nt01NA
2 rabdiophlem1 t1NBmzPoly1Nt01NB
3 divides ABABaaA=B
4 oveq1 a=baA=bA
5 4 eqeq1d a=baA=BbA=B
6 oveq1 a=baA=bA
7 6 eqeq1d a=baA=BbA=B
8 5 7 rexzrexnn0 aaA=Bb0bA=BbA=B
9 3 8 bitrdi ABABb0bA=BbA=B
10 9 ralimi t01NABt01NABb0bA=BbA=B
11 r19.26 t01NABt01NAt01NB
12 rabbi t01NABb0bA=BbA=Bt01N|AB=t01N|b0bA=BbA=B
13 10 11 12 3imtr3i t01NAt01NBt01N|AB=t01N|b0bA=BbA=B
14 1 2 13 syl2an t1NAmzPoly1Nt1NBmzPoly1Nt01N|AB=t01N|b0bA=BbA=B
15 14 3adant1 N0t1NAmzPoly1Nt1NBmzPoly1Nt01N|AB=t01N|b0bA=BbA=B
16 nfcv _t01N
17 nfcv _a01N
18 nfv ab0bA=BbA=B
19 nfcv _t0
20 nfcv _tb
21 nfcv _t×
22 nfcsb1v _ta/tA
23 20 21 22 nfov _tba/tA
24 nfcsb1v _ta/tB
25 23 24 nfeq tba/tA=a/tB
26 nfcv _tb
27 26 21 22 nfov _tba/tA
28 27 24 nfeq tba/tA=a/tB
29 25 28 nfor tba/tA=a/tBba/tA=a/tB
30 19 29 nfrexw tb0ba/tA=a/tBba/tA=a/tB
31 csbeq1a t=aA=a/tA
32 31 oveq2d t=abA=ba/tA
33 csbeq1a t=aB=a/tB
34 32 33 eqeq12d t=abA=Bba/tA=a/tB
35 31 oveq2d t=abA=ba/tA
36 35 33 eqeq12d t=abA=Bba/tA=a/tB
37 34 36 orbi12d t=abA=BbA=Bba/tA=a/tBba/tA=a/tB
38 37 rexbidv t=ab0bA=BbA=Bb0ba/tA=a/tBba/tA=a/tB
39 16 17 18 30 38 cbvrabw t01N|b0bA=BbA=B=a01N|b0ba/tA=a/tBba/tA=a/tB
40 simp1 N0t1NAmzPoly1Nt1NBmzPoly1NN0
41 peano2nn0 N0N+10
42 41 3ad2ant1 N0t1NAmzPoly1Nt1NBmzPoly1NN+10
43 ovex 1N+1V
44 nn0p1nn N0N+1
45 elfz1end N+1N+11N+1
46 44 45 sylib N0N+11N+1
47 mzpproj 1N+1VN+11N+1c1N+1cN+1mzPoly1N+1
48 43 46 47 sylancr N0c1N+1cN+1mzPoly1N+1
49 48 adantr N0t1NAmzPoly1Nc1N+1cN+1mzPoly1N+1
50 eqid N+1=N+1
51 50 rabdiophlem2 N0t1NAmzPoly1Nc1N+1c1N/tAmzPoly1N+1
52 mzpmulmpt c1N+1cN+1mzPoly1N+1c1N+1c1N/tAmzPoly1N+1c1N+1cN+1c1N/tAmzPoly1N+1
53 49 51 52 syl2anc N0t1NAmzPoly1Nc1N+1cN+1c1N/tAmzPoly1N+1
54 53 3adant3 N0t1NAmzPoly1Nt1NBmzPoly1Nc1N+1cN+1c1N/tAmzPoly1N+1
55 50 rabdiophlem2 N0t1NBmzPoly1Nc1N+1c1N/tBmzPoly1N+1
56 55 3adant2 N0t1NAmzPoly1Nt1NBmzPoly1Nc1N+1c1N/tBmzPoly1N+1
57 eqrabdioph N+10c1N+1cN+1c1N/tAmzPoly1N+1c1N+1c1N/tBmzPoly1N+1c01N+1|cN+1c1N/tA=c1N/tBDiophN+1
58 42 54 56 57 syl3anc N0t1NAmzPoly1Nt1NBmzPoly1Nc01N+1|cN+1c1N/tA=c1N/tBDiophN+1
59 mzpnegmpt c1N+1cN+1mzPoly1N+1c1N+1cN+1mzPoly1N+1
60 49 59 syl N0t1NAmzPoly1Nc1N+1cN+1mzPoly1N+1
61 mzpmulmpt c1N+1cN+1mzPoly1N+1c1N+1c1N/tAmzPoly1N+1c1N+1cN+1c1N/tAmzPoly1N+1
62 60 51 61 syl2anc N0t1NAmzPoly1Nc1N+1cN+1c1N/tAmzPoly1N+1
63 62 3adant3 N0t1NAmzPoly1Nt1NBmzPoly1Nc1N+1cN+1c1N/tAmzPoly1N+1
64 eqrabdioph N+10c1N+1cN+1c1N/tAmzPoly1N+1c1N+1c1N/tBmzPoly1N+1c01N+1|cN+1c1N/tA=c1N/tBDiophN+1
65 42 63 56 64 syl3anc N0t1NAmzPoly1Nt1NBmzPoly1Nc01N+1|cN+1c1N/tA=c1N/tBDiophN+1
66 orrabdioph c01N+1|cN+1c1N/tA=c1N/tBDiophN+1c01N+1|cN+1c1N/tA=c1N/tBDiophN+1c01N+1|cN+1c1N/tA=c1N/tBcN+1c1N/tA=c1N/tBDiophN+1
67 58 65 66 syl2anc N0t1NAmzPoly1Nt1NBmzPoly1Nc01N+1|cN+1c1N/tA=c1N/tBcN+1c1N/tA=c1N/tBDiophN+1
68 oveq1 b=cN+1ba/tA=cN+1a/tA
69 68 eqeq1d b=cN+1ba/tA=a/tBcN+1a/tA=a/tB
70 negeq b=cN+1b=cN+1
71 70 oveq1d b=cN+1ba/tA=cN+1a/tA
72 71 eqeq1d b=cN+1ba/tA=a/tBcN+1a/tA=a/tB
73 69 72 orbi12d b=cN+1ba/tA=a/tBba/tA=a/tBcN+1a/tA=a/tBcN+1a/tA=a/tB
74 csbeq1 a=c1Na/tA=c1N/tA
75 74 oveq2d a=c1NcN+1a/tA=cN+1c1N/tA
76 csbeq1 a=c1Na/tB=c1N/tB
77 75 76 eqeq12d a=c1NcN+1a/tA=a/tBcN+1c1N/tA=c1N/tB
78 74 oveq2d a=c1NcN+1a/tA=cN+1c1N/tA
79 78 76 eqeq12d a=c1NcN+1a/tA=a/tBcN+1c1N/tA=c1N/tB
80 77 79 orbi12d a=c1NcN+1a/tA=a/tBcN+1a/tA=a/tBcN+1c1N/tA=c1N/tBcN+1c1N/tA=c1N/tB
81 50 73 80 rexrabdioph N0c01N+1|cN+1c1N/tA=c1N/tBcN+1c1N/tA=c1N/tBDiophN+1a01N|b0ba/tA=a/tBba/tA=a/tBDiophN
82 40 67 81 syl2anc N0t1NAmzPoly1Nt1NBmzPoly1Na01N|b0ba/tA=a/tBba/tA=a/tBDiophN
83 39 82 eqeltrid N0t1NAmzPoly1Nt1NBmzPoly1Nt01N|b0bA=BbA=BDiophN
84 15 83 eqeltrd N0t1NAmzPoly1Nt1NBmzPoly1Nt01N|ABDiophN