Metamath Proof Explorer


Theorem dvdsrabdioph

Description: Divisibility is a Diophantine relation. (Contributed by Stefan O'Rear, 11-Oct-2014)

Ref Expression
Assertion dvdsrabdioph N 0 t 1 N A mzPoly 1 N t 1 N B mzPoly 1 N t 0 1 N | A B Dioph N

Proof

Step Hyp Ref Expression
1 rabdiophlem1 t 1 N A mzPoly 1 N t 0 1 N A
2 rabdiophlem1 t 1 N B mzPoly 1 N t 0 1 N B
3 divides A B A B a a A = B
4 oveq1 a = b a A = b A
5 4 eqeq1d a = b a A = B b A = B
6 oveq1 a = b a A = b A
7 6 eqeq1d a = b a A = B b A = B
8 5 7 rexzrexnn0 a a A = B b 0 b A = B b A = B
9 3 8 bitrdi A B A B b 0 b A = B b A = B
10 9 ralimi t 0 1 N A B t 0 1 N A B b 0 b A = B b A = B
11 r19.26 t 0 1 N A B t 0 1 N A t 0 1 N B
12 rabbi t 0 1 N A B b 0 b A = B b A = B t 0 1 N | A B = t 0 1 N | b 0 b A = B b A = B
13 10 11 12 3imtr3i t 0 1 N A t 0 1 N B t 0 1 N | A B = t 0 1 N | b 0 b A = B b A = B
14 1 2 13 syl2an t 1 N A mzPoly 1 N t 1 N B mzPoly 1 N t 0 1 N | A B = t 0 1 N | b 0 b A = B b A = B
15 14 3adant1 N 0 t 1 N A mzPoly 1 N t 1 N B mzPoly 1 N t 0 1 N | A B = t 0 1 N | b 0 b A = B b A = B
16 nfcv _ t 0 1 N
17 nfcv _ a 0 1 N
18 nfv a b 0 b A = B b A = B
19 nfcv _ t 0
20 nfcv _ t b
21 nfcv _ t ×
22 nfcsb1v _ t a / t A
23 20 21 22 nfov _ t b a / t A
24 nfcsb1v _ t a / t B
25 23 24 nfeq t b a / t A = a / t B
26 nfcv _ t b
27 26 21 22 nfov _ t b a / t A
28 27 24 nfeq t b a / t A = a / t B
29 25 28 nfor t b a / t A = a / t B b a / t A = a / t B
30 19 29 nfrex t b 0 b a / t A = a / t B b a / t A = a / t B
31 csbeq1a t = a A = a / t A
32 31 oveq2d t = a b A = b a / t A
33 csbeq1a t = a B = a / t B
34 32 33 eqeq12d t = a b A = B b a / t A = a / t B
35 31 oveq2d t = a b A = b a / t A
36 35 33 eqeq12d t = a b A = B b a / t A = a / t B
37 34 36 orbi12d t = a b A = B b A = B b a / t A = a / t B b a / t A = a / t B
38 37 rexbidv t = a b 0 b A = B b A = B b 0 b a / t A = a / t B b a / t A = a / t B
39 16 17 18 30 38 cbvrabw t 0 1 N | b 0 b A = B b A = B = a 0 1 N | b 0 b a / t A = a / t B b a / t A = a / t B
40 simp1 N 0 t 1 N A mzPoly 1 N t 1 N B mzPoly 1 N N 0
41 peano2nn0 N 0 N + 1 0
42 41 3ad2ant1 N 0 t 1 N A mzPoly 1 N t 1 N B mzPoly 1 N N + 1 0
43 ovex 1 N + 1 V
44 nn0p1nn N 0 N + 1
45 elfz1end N + 1 N + 1 1 N + 1
46 44 45 sylib N 0 N + 1 1 N + 1
47 mzpproj 1 N + 1 V N + 1 1 N + 1 c 1 N + 1 c N + 1 mzPoly 1 N + 1
48 43 46 47 sylancr N 0 c 1 N + 1 c N + 1 mzPoly 1 N + 1
49 48 adantr N 0 t 1 N A mzPoly 1 N c 1 N + 1 c N + 1 mzPoly 1 N + 1
50 eqid N + 1 = N + 1
51 50 rabdiophlem2 N 0 t 1 N A mzPoly 1 N c 1 N + 1 c 1 N / t A mzPoly 1 N + 1
52 mzpmulmpt c 1 N + 1 c N + 1 mzPoly 1 N + 1 c 1 N + 1 c 1 N / t A mzPoly 1 N + 1 c 1 N + 1 c N + 1 c 1 N / t A mzPoly 1 N + 1
53 49 51 52 syl2anc N 0 t 1 N A mzPoly 1 N c 1 N + 1 c N + 1 c 1 N / t A mzPoly 1 N + 1
54 53 3adant3 N 0 t 1 N A mzPoly 1 N t 1 N B mzPoly 1 N c 1 N + 1 c N + 1 c 1 N / t A mzPoly 1 N + 1
55 50 rabdiophlem2 N 0 t 1 N B mzPoly 1 N c 1 N + 1 c 1 N / t B mzPoly 1 N + 1
56 55 3adant2 N 0 t 1 N A mzPoly 1 N t 1 N B mzPoly 1 N c 1 N + 1 c 1 N / t B mzPoly 1 N + 1
57 eqrabdioph N + 1 0 c 1 N + 1 c N + 1 c 1 N / t A mzPoly 1 N + 1 c 1 N + 1 c 1 N / t B mzPoly 1 N + 1 c 0 1 N + 1 | c N + 1 c 1 N / t A = c 1 N / t B Dioph N + 1
58 42 54 56 57 syl3anc N 0 t 1 N A mzPoly 1 N t 1 N B mzPoly 1 N c 0 1 N + 1 | c N + 1 c 1 N / t A = c 1 N / t B Dioph N + 1
59 mzpnegmpt c 1 N + 1 c N + 1 mzPoly 1 N + 1 c 1 N + 1 c N + 1 mzPoly 1 N + 1
60 49 59 syl N 0 t 1 N A mzPoly 1 N c 1 N + 1 c N + 1 mzPoly 1 N + 1
61 mzpmulmpt c 1 N + 1 c N + 1 mzPoly 1 N + 1 c 1 N + 1 c 1 N / t A mzPoly 1 N + 1 c 1 N + 1 c N + 1 c 1 N / t A mzPoly 1 N + 1
62 60 51 61 syl2anc N 0 t 1 N A mzPoly 1 N c 1 N + 1 c N + 1 c 1 N / t A mzPoly 1 N + 1
63 62 3adant3 N 0 t 1 N A mzPoly 1 N t 1 N B mzPoly 1 N c 1 N + 1 c N + 1 c 1 N / t A mzPoly 1 N + 1
64 eqrabdioph N + 1 0 c 1 N + 1 c N + 1 c 1 N / t A mzPoly 1 N + 1 c 1 N + 1 c 1 N / t B mzPoly 1 N + 1 c 0 1 N + 1 | c N + 1 c 1 N / t A = c 1 N / t B Dioph N + 1
65 42 63 56 64 syl3anc N 0 t 1 N A mzPoly 1 N t 1 N B mzPoly 1 N c 0 1 N + 1 | c N + 1 c 1 N / t A = c 1 N / t B Dioph N + 1
66 orrabdioph c 0 1 N + 1 | c N + 1 c 1 N / t A = c 1 N / t B Dioph N + 1 c 0 1 N + 1 | c N + 1 c 1 N / t A = c 1 N / t B Dioph N + 1 c 0 1 N + 1 | c N + 1 c 1 N / t A = c 1 N / t B c N + 1 c 1 N / t A = c 1 N / t B Dioph N + 1
67 58 65 66 syl2anc N 0 t 1 N A mzPoly 1 N t 1 N B mzPoly 1 N c 0 1 N + 1 | c N + 1 c 1 N / t A = c 1 N / t B c N + 1 c 1 N / t A = c 1 N / t B Dioph N + 1
68 oveq1 b = c N + 1 b a / t A = c N + 1 a / t A
69 68 eqeq1d b = c N + 1 b a / t A = a / t B c N + 1 a / t A = a / t B
70 negeq b = c N + 1 b = c N + 1
71 70 oveq1d b = c N + 1 b a / t A = c N + 1 a / t A
72 71 eqeq1d b = c N + 1 b a / t A = a / t B c N + 1 a / t A = a / t B
73 69 72 orbi12d b = c N + 1 b a / t A = a / t B b a / t A = a / t B c N + 1 a / t A = a / t B c N + 1 a / t A = a / t B
74 csbeq1 a = c 1 N a / t A = c 1 N / t A
75 74 oveq2d a = c 1 N c N + 1 a / t A = c N + 1 c 1 N / t A
76 csbeq1 a = c 1 N a / t B = c 1 N / t B
77 75 76 eqeq12d a = c 1 N c N + 1 a / t A = a / t B c N + 1 c 1 N / t A = c 1 N / t B
78 74 oveq2d a = c 1 N c N + 1 a / t A = c N + 1 c 1 N / t A
79 78 76 eqeq12d a = c 1 N c N + 1 a / t A = a / t B c N + 1 c 1 N / t A = c 1 N / t B
80 77 79 orbi12d a = c 1 N c N + 1 a / t A = a / t B c N + 1 a / t A = a / t B c N + 1 c 1 N / t A = c 1 N / t B c N + 1 c 1 N / t A = c 1 N / t B
81 50 73 80 rexrabdioph N 0 c 0 1 N + 1 | c N + 1 c 1 N / t A = c 1 N / t B c N + 1 c 1 N / t A = c 1 N / t B Dioph N + 1 a 0 1 N | b 0 b a / t A = a / t B b a / t A = a / t B Dioph N
82 40 67 81 syl2anc N 0 t 1 N A mzPoly 1 N t 1 N B mzPoly 1 N a 0 1 N | b 0 b a / t A = a / t B b a / t A = a / t B Dioph N
83 39 82 eqeltrid N 0 t 1 N A mzPoly 1 N t 1 N B mzPoly 1 N t 0 1 N | b 0 b A = B b A = B Dioph N
84 15 83 eqeltrd N 0 t 1 N A mzPoly 1 N t 1 N B mzPoly 1 N t 0 1 N | A B Dioph N