Step |
Hyp |
Ref |
Expression |
1 |
|
rabdiophlem1 |
|
2 |
|
rabdiophlem1 |
|
3 |
|
divides |
|
4 |
|
oveq1 |
|
5 |
4
|
eqeq1d |
|
6 |
|
oveq1 |
|
7 |
6
|
eqeq1d |
|
8 |
5 7
|
rexzrexnn0 |
|
9 |
3 8
|
bitrdi |
|
10 |
9
|
ralimi |
|
11 |
|
r19.26 |
|
12 |
|
rabbi |
|
13 |
10 11 12
|
3imtr3i |
|
14 |
1 2 13
|
syl2an |
|
15 |
14
|
3adant1 |
|
16 |
|
nfcv |
|
17 |
|
nfcv |
|
18 |
|
nfv |
|
19 |
|
nfcv |
|
20 |
|
nfcv |
|
21 |
|
nfcv |
|
22 |
|
nfcsb1v |
|
23 |
20 21 22
|
nfov |
|
24 |
|
nfcsb1v |
|
25 |
23 24
|
nfeq |
|
26 |
|
nfcv |
|
27 |
26 21 22
|
nfov |
|
28 |
27 24
|
nfeq |
|
29 |
25 28
|
nfor |
|
30 |
19 29
|
nfrex |
|
31 |
|
csbeq1a |
|
32 |
31
|
oveq2d |
|
33 |
|
csbeq1a |
|
34 |
32 33
|
eqeq12d |
|
35 |
31
|
oveq2d |
|
36 |
35 33
|
eqeq12d |
|
37 |
34 36
|
orbi12d |
|
38 |
37
|
rexbidv |
|
39 |
16 17 18 30 38
|
cbvrabw |
|
40 |
|
simp1 |
|
41 |
|
peano2nn0 |
|
42 |
41
|
3ad2ant1 |
|
43 |
|
ovex |
|
44 |
|
nn0p1nn |
|
45 |
|
elfz1end |
|
46 |
44 45
|
sylib |
|
47 |
|
mzpproj |
|
48 |
43 46 47
|
sylancr |
|
49 |
48
|
adantr |
|
50 |
|
eqid |
|
51 |
50
|
rabdiophlem2 |
|
52 |
|
mzpmulmpt |
|
53 |
49 51 52
|
syl2anc |
|
54 |
53
|
3adant3 |
|
55 |
50
|
rabdiophlem2 |
|
56 |
55
|
3adant2 |
|
57 |
|
eqrabdioph |
|
58 |
42 54 56 57
|
syl3anc |
|
59 |
|
mzpnegmpt |
|
60 |
49 59
|
syl |
|
61 |
|
mzpmulmpt |
|
62 |
60 51 61
|
syl2anc |
|
63 |
62
|
3adant3 |
|
64 |
|
eqrabdioph |
|
65 |
42 63 56 64
|
syl3anc |
|
66 |
|
orrabdioph |
|
67 |
58 65 66
|
syl2anc |
|
68 |
|
oveq1 |
|
69 |
68
|
eqeq1d |
|
70 |
|
negeq |
|
71 |
70
|
oveq1d |
|
72 |
71
|
eqeq1d |
|
73 |
69 72
|
orbi12d |
|
74 |
|
csbeq1 |
|
75 |
74
|
oveq2d |
|
76 |
|
csbeq1 |
|
77 |
75 76
|
eqeq12d |
|
78 |
74
|
oveq2d |
|
79 |
78 76
|
eqeq12d |
|
80 |
77 79
|
orbi12d |
|
81 |
50 73 80
|
rexrabdioph |
|
82 |
40 67 81
|
syl2anc |
|
83 |
39 82
|
eqeltrid |
|
84 |
15 83
|
eqeltrd |
|