Metamath Proof Explorer


Theorem nghmfval

Description: A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Hypothesis nmofval.1 N=SnormOpT
Assertion nghmfval SNGHomT=N-1

Proof

Step Hyp Ref Expression
1 nmofval.1 N=SnormOpT
2 oveq12 s=St=TsnormOpt=SnormOpT
3 2 1 eqtr4di s=St=TsnormOpt=N
4 3 cnveqd s=St=TsnormOpt-1=N-1
5 4 imaeq1d s=St=TsnormOpt-1=N-1
6 df-nghm NGHom=sNrmGrp,tNrmGrpsnormOpt-1
7 1 ovexi NV
8 7 cnvex N-1V
9 8 imaex N-1V
10 5 6 9 ovmpoa SNrmGrpTNrmGrpSNGHomT=N-1
11 6 mpondm0 ¬SNrmGrpTNrmGrpSNGHomT=
12 nmoffn normOpFnNrmGrp×NrmGrp
13 12 fndmi domnormOp=NrmGrp×NrmGrp
14 13 ndmov ¬SNrmGrpTNrmGrpSnormOpT=
15 1 14 eqtrid ¬SNrmGrpTNrmGrpN=
16 15 cnveqd ¬SNrmGrpTNrmGrpN-1=-1
17 cnv0 -1=
18 16 17 eqtrdi ¬SNrmGrpTNrmGrpN-1=
19 18 imaeq1d ¬SNrmGrpTNrmGrpN-1=
20 0ima =
21 19 20 eqtrdi ¬SNrmGrpTNrmGrpN-1=
22 11 21 eqtr4d ¬SNrmGrpTNrmGrpSNGHomT=N-1
23 10 22 pm2.61i SNGHomT=N-1