Metamath Proof Explorer


Theorem nlmdsdi

Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypotheses nlmdsdi.v V=BaseW
nlmdsdi.s ·˙=W
nlmdsdi.f F=ScalarW
nlmdsdi.k K=BaseF
nlmdsdi.d D=distW
nlmdsdi.a A=normF
Assertion nlmdsdi WNrmModXKYVZVAXYDZ=X·˙YDX·˙Z

Proof

Step Hyp Ref Expression
1 nlmdsdi.v V=BaseW
2 nlmdsdi.s ·˙=W
3 nlmdsdi.f F=ScalarW
4 nlmdsdi.k K=BaseF
5 nlmdsdi.d D=distW
6 nlmdsdi.a A=normF
7 simpl WNrmModXKYVZVWNrmMod
8 simpr1 WNrmModXKYVZVXK
9 nlmngp WNrmModWNrmGrp
10 9 adantr WNrmModXKYVZVWNrmGrp
11 ngpgrp WNrmGrpWGrp
12 10 11 syl WNrmModXKYVZVWGrp
13 simpr2 WNrmModXKYVZVYV
14 simpr3 WNrmModXKYVZVZV
15 eqid -W=-W
16 1 15 grpsubcl WGrpYVZVY-WZV
17 12 13 14 16 syl3anc WNrmModXKYVZVY-WZV
18 eqid normW=normW
19 1 18 2 3 4 6 nmvs WNrmModXKY-WZVnormWX·˙Y-WZ=AXnormWY-WZ
20 7 8 17 19 syl3anc WNrmModXKYVZVnormWX·˙Y-WZ=AXnormWY-WZ
21 nlmlmod WNrmModWLMod
22 21 adantr WNrmModXKYVZVWLMod
23 1 2 3 4 15 22 8 13 14 lmodsubdi WNrmModXKYVZVX·˙Y-WZ=X·˙Y-WX·˙Z
24 23 fveq2d WNrmModXKYVZVnormWX·˙Y-WZ=normWX·˙Y-WX·˙Z
25 20 24 eqtr3d WNrmModXKYVZVAXnormWY-WZ=normWX·˙Y-WX·˙Z
26 18 1 15 5 ngpds WNrmGrpYVZVYDZ=normWY-WZ
27 10 13 14 26 syl3anc WNrmModXKYVZVYDZ=normWY-WZ
28 27 oveq2d WNrmModXKYVZVAXYDZ=AXnormWY-WZ
29 1 3 2 4 lmodvscl WLModXKYVX·˙YV
30 22 8 13 29 syl3anc WNrmModXKYVZVX·˙YV
31 1 3 2 4 lmodvscl WLModXKZVX·˙ZV
32 22 8 14 31 syl3anc WNrmModXKYVZVX·˙ZV
33 18 1 15 5 ngpds WNrmGrpX·˙YVX·˙ZVX·˙YDX·˙Z=normWX·˙Y-WX·˙Z
34 10 30 32 33 syl3anc WNrmModXKYVZVX·˙YDX·˙Z=normWX·˙Y-WX·˙Z
35 25 28 34 3eqtr4d WNrmModXKYVZVAXYDZ=X·˙YDX·˙Z