Metamath Proof Explorer


Theorem nlmdsdir

Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypotheses nlmdsdi.v V=BaseW
nlmdsdi.s ·˙=W
nlmdsdi.f F=ScalarW
nlmdsdi.k K=BaseF
nlmdsdi.d D=distW
nlmdsdir.n N=normW
nlmdsdir.e E=distF
Assertion nlmdsdir WNrmModXKYKZVXEYNZ=X·˙ZDY·˙Z

Proof

Step Hyp Ref Expression
1 nlmdsdi.v V=BaseW
2 nlmdsdi.s ·˙=W
3 nlmdsdi.f F=ScalarW
4 nlmdsdi.k K=BaseF
5 nlmdsdi.d D=distW
6 nlmdsdir.n N=normW
7 nlmdsdir.e E=distF
8 simpl WNrmModXKYKZVWNrmMod
9 3 nlmngp2 WNrmModFNrmGrp
10 9 adantr WNrmModXKYKZVFNrmGrp
11 ngpgrp FNrmGrpFGrp
12 10 11 syl WNrmModXKYKZVFGrp
13 simpr1 WNrmModXKYKZVXK
14 simpr2 WNrmModXKYKZVYK
15 eqid -F=-F
16 4 15 grpsubcl FGrpXKYKX-FYK
17 12 13 14 16 syl3anc WNrmModXKYKZVX-FYK
18 simpr3 WNrmModXKYKZVZV
19 eqid normF=normF
20 1 6 2 3 4 19 nmvs WNrmModX-FYKZVNX-FY·˙Z=normFX-FYNZ
21 8 17 18 20 syl3anc WNrmModXKYKZVNX-FY·˙Z=normFX-FYNZ
22 eqid -W=-W
23 nlmlmod WNrmModWLMod
24 23 adantr WNrmModXKYKZVWLMod
25 1 2 3 4 22 15 24 13 14 18 lmodsubdir WNrmModXKYKZVX-FY·˙Z=X·˙Z-WY·˙Z
26 25 fveq2d WNrmModXKYKZVNX-FY·˙Z=NX·˙Z-WY·˙Z
27 21 26 eqtr3d WNrmModXKYKZVnormFX-FYNZ=NX·˙Z-WY·˙Z
28 19 4 15 7 ngpds FNrmGrpXKYKXEY=normFX-FY
29 10 13 14 28 syl3anc WNrmModXKYKZVXEY=normFX-FY
30 29 oveq1d WNrmModXKYKZVXEYNZ=normFX-FYNZ
31 nlmngp WNrmModWNrmGrp
32 31 adantr WNrmModXKYKZVWNrmGrp
33 1 3 2 4 lmodvscl WLModXKZVX·˙ZV
34 24 13 18 33 syl3anc WNrmModXKYKZVX·˙ZV
35 1 3 2 4 lmodvscl WLModYKZVY·˙ZV
36 24 14 18 35 syl3anc WNrmModXKYKZVY·˙ZV
37 6 1 22 5 ngpds WNrmGrpX·˙ZVY·˙ZVX·˙ZDY·˙Z=NX·˙Z-WY·˙Z
38 32 34 36 37 syl3anc WNrmModXKYKZVX·˙ZDY·˙Z=NX·˙Z-WY·˙Z
39 27 30 38 3eqtr4d WNrmModXKYKZVXEYNZ=X·˙ZDY·˙Z