Metamath Proof Explorer


Theorem nmmtri

Description: The triangle inequality for the norm of a subtraction. (Contributed by NM, 27-Dec-2007) (Revised by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nmf.x X=BaseG
nmf.n N=normG
nmmtri.m -˙=-G
Assertion nmmtri GNrmGrpAXBXNA-˙BNA+NB

Proof

Step Hyp Ref Expression
1 nmf.x X=BaseG
2 nmf.n N=normG
3 nmmtri.m -˙=-G
4 eqid distG=distG
5 2 1 3 4 ngpds GNrmGrpAXBXAdistGB=NA-˙B
6 ngpms GNrmGrpGMetSp
7 6 3ad2ant1 GNrmGrpAXBXGMetSp
8 simp2 GNrmGrpAXBXAX
9 simp3 GNrmGrpAXBXBX
10 ngpgrp GNrmGrpGGrp
11 eqid 0G=0G
12 1 11 grpidcl GGrp0GX
13 10 12 syl GNrmGrp0GX
14 13 3ad2ant1 GNrmGrpAXBX0GX
15 1 4 mstri3 GMetSpAXBX0GXAdistGBAdistG0G+BdistG0G
16 7 8 9 14 15 syl13anc GNrmGrpAXBXAdistGBAdistG0G+BdistG0G
17 2 1 11 4 nmval AXNA=AdistG0G
18 17 3ad2ant2 GNrmGrpAXBXNA=AdistG0G
19 2 1 11 4 nmval BXNB=BdistG0G
20 19 3ad2ant3 GNrmGrpAXBXNB=BdistG0G
21 18 20 oveq12d GNrmGrpAXBXNA+NB=AdistG0G+BdistG0G
22 16 21 breqtrrd GNrmGrpAXBXAdistGBNA+NB
23 5 22 eqbrtrrd GNrmGrpAXBXNA-˙BNA+NB