Metamath Proof Explorer


Theorem nmo0

Description: The operator norm of the zero operator. (Contributed by Mario Carneiro, 20-Oct-2015)

Ref Expression
Hypotheses nmo0.1 N=SnormOpT
nmo0.2 V=BaseS
nmo0.3 0˙=0T
Assertion nmo0 SNrmGrpTNrmGrpNV×0˙=0

Proof

Step Hyp Ref Expression
1 nmo0.1 N=SnormOpT
2 nmo0.2 V=BaseS
3 nmo0.3 0˙=0T
4 eqid normS=normS
5 eqid normT=normT
6 eqid 0S=0S
7 simpl SNrmGrpTNrmGrpSNrmGrp
8 simpr SNrmGrpTNrmGrpTNrmGrp
9 ngpgrp SNrmGrpSGrp
10 ngpgrp TNrmGrpTGrp
11 3 2 0ghm SGrpTGrpV×0˙SGrpHomT
12 9 10 11 syl2an SNrmGrpTNrmGrpV×0˙SGrpHomT
13 0red SNrmGrpTNrmGrp0
14 0le0 00
15 14 a1i SNrmGrpTNrmGrp00
16 3 fvexi 0˙V
17 16 fvconst2 xVV×0˙x=0˙
18 17 ad2antrl SNrmGrpTNrmGrpxVx0SV×0˙x=0˙
19 18 fveq2d SNrmGrpTNrmGrpxVx0SnormTV×0˙x=normT0˙
20 5 3 nm0 TNrmGrpnormT0˙=0
21 20 ad2antlr SNrmGrpTNrmGrpxVx0SnormT0˙=0
22 19 21 eqtrd SNrmGrpTNrmGrpxVx0SnormTV×0˙x=0
23 2 4 nmcl SNrmGrpxVnormSx
24 23 ad2ant2r SNrmGrpTNrmGrpxVx0SnormSx
25 24 recnd SNrmGrpTNrmGrpxVx0SnormSx
26 25 mul02d SNrmGrpTNrmGrpxVx0S0normSx=0
27 14 26 breqtrrid SNrmGrpTNrmGrpxVx0S00normSx
28 22 27 eqbrtrd SNrmGrpTNrmGrpxVx0SnormTV×0˙x0normSx
29 1 2 4 5 6 7 8 12 13 15 28 nmolb2d SNrmGrpTNrmGrpNV×0˙0
30 1 nmoge0 SNrmGrpTNrmGrpV×0˙SGrpHomT0NV×0˙
31 12 30 mpd3an3 SNrmGrpTNrmGrp0NV×0˙
32 1 nmocl SNrmGrpTNrmGrpV×0˙SGrpHomTNV×0˙*
33 12 32 mpd3an3 SNrmGrpTNrmGrpNV×0˙*
34 0xr 0*
35 xrletri3 NV×0˙*0*NV×0˙=0NV×0˙00NV×0˙
36 33 34 35 sylancl SNrmGrpTNrmGrpNV×0˙=0NV×0˙00NV×0˙
37 29 31 36 mpbir2and SNrmGrpTNrmGrpNV×0˙=0