Description: Any subgroup is a normal subgroup of its normalizer. (Contributed by Mario Carneiro, 19-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elnmz.1 | |
|
nmzsubg.2 | |
||
nmzsubg.3 | |
||
nmznsg.4 | |
||
Assertion | nmznsg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnmz.1 | |
|
2 | nmzsubg.2 | |
|
3 | nmzsubg.3 | |
|
4 | nmznsg.4 | |
|
5 | id | |
|
6 | 1 2 3 | ssnmz | |
7 | subgrcl | |
|
8 | 1 2 3 | nmzsubg | |
9 | 7 8 | syl | |
10 | 4 | subsubg | |
11 | 9 10 | syl | |
12 | 5 6 11 | mpbir2and | |
13 | 1 | ssrab3 | |
14 | 13 | sseli | |
15 | 1 | nmzbi | |
16 | 14 15 | sylan2 | |
17 | 16 | rgen2 | |
18 | 4 | subgbas | |
19 | 9 18 | syl | |
20 | 19 | raleqdv | |
21 | 19 20 | raleqbidv | |
22 | 17 21 | mpbii | |
23 | eqid | |
|
24 | 2 | fvexi | |
25 | 24 13 | ssexi | |
26 | 4 3 | ressplusg | |
27 | 25 26 | ax-mp | |
28 | 23 27 | isnsg | |
29 | 12 22 28 | sylanbrc | |