Metamath Proof Explorer


Theorem nmznsg

Description: Any subgroup is a normal subgroup of its normalizer. (Contributed by Mario Carneiro, 19-Jan-2015)

Ref Expression
Hypotheses elnmz.1 N = x X | y X x + ˙ y S y + ˙ x S
nmzsubg.2 X = Base G
nmzsubg.3 + ˙ = + G
nmznsg.4 H = G 𝑠 N
Assertion nmznsg S SubGrp G S NrmSGrp H

Proof

Step Hyp Ref Expression
1 elnmz.1 N = x X | y X x + ˙ y S y + ˙ x S
2 nmzsubg.2 X = Base G
3 nmzsubg.3 + ˙ = + G
4 nmznsg.4 H = G 𝑠 N
5 id S SubGrp G S SubGrp G
6 1 2 3 ssnmz S SubGrp G S N
7 subgrcl S SubGrp G G Grp
8 1 2 3 nmzsubg G Grp N SubGrp G
9 7 8 syl S SubGrp G N SubGrp G
10 4 subsubg N SubGrp G S SubGrp H S SubGrp G S N
11 9 10 syl S SubGrp G S SubGrp H S SubGrp G S N
12 5 6 11 mpbir2and S SubGrp G S SubGrp H
13 1 ssrab3 N X
14 13 sseli w N w X
15 1 nmzbi z N w X z + ˙ w S w + ˙ z S
16 14 15 sylan2 z N w N z + ˙ w S w + ˙ z S
17 16 rgen2 z N w N z + ˙ w S w + ˙ z S
18 4 subgbas N SubGrp G N = Base H
19 9 18 syl S SubGrp G N = Base H
20 19 raleqdv S SubGrp G w N z + ˙ w S w + ˙ z S w Base H z + ˙ w S w + ˙ z S
21 19 20 raleqbidv S SubGrp G z N w N z + ˙ w S w + ˙ z S z Base H w Base H z + ˙ w S w + ˙ z S
22 17 21 mpbii S SubGrp G z Base H w Base H z + ˙ w S w + ˙ z S
23 eqid Base H = Base H
24 2 fvexi X V
25 24 13 ssexi N V
26 4 3 ressplusg N V + ˙ = + H
27 25 26 ax-mp + ˙ = + H
28 23 27 isnsg S NrmSGrp H S SubGrp H z Base H w Base H z + ˙ w S w + ˙ z S
29 12 22 28 sylanbrc S SubGrp G S NrmSGrp H