Metamath Proof Explorer


Theorem nmznsg

Description: Any subgroup is a normal subgroup of its normalizer. (Contributed by Mario Carneiro, 19-Jan-2015)

Ref Expression
Hypotheses elnmz.1 N=xX|yXx+˙ySy+˙xS
nmzsubg.2 X=BaseG
nmzsubg.3 +˙=+G
nmznsg.4 H=G𝑠N
Assertion nmznsg SSubGrpGSNrmSGrpH

Proof

Step Hyp Ref Expression
1 elnmz.1 N=xX|yXx+˙ySy+˙xS
2 nmzsubg.2 X=BaseG
3 nmzsubg.3 +˙=+G
4 nmznsg.4 H=G𝑠N
5 id SSubGrpGSSubGrpG
6 1 2 3 ssnmz SSubGrpGSN
7 subgrcl SSubGrpGGGrp
8 1 2 3 nmzsubg GGrpNSubGrpG
9 7 8 syl SSubGrpGNSubGrpG
10 4 subsubg NSubGrpGSSubGrpHSSubGrpGSN
11 9 10 syl SSubGrpGSSubGrpHSSubGrpGSN
12 5 6 11 mpbir2and SSubGrpGSSubGrpH
13 1 ssrab3 NX
14 13 sseli wNwX
15 1 nmzbi zNwXz+˙wSw+˙zS
16 14 15 sylan2 zNwNz+˙wSw+˙zS
17 16 rgen2 zNwNz+˙wSw+˙zS
18 4 subgbas NSubGrpGN=BaseH
19 9 18 syl SSubGrpGN=BaseH
20 19 raleqdv SSubGrpGwNz+˙wSw+˙zSwBaseHz+˙wSw+˙zS
21 19 20 raleqbidv SSubGrpGzNwNz+˙wSw+˙zSzBaseHwBaseHz+˙wSw+˙zS
22 17 21 mpbii SSubGrpGzBaseHwBaseHz+˙wSw+˙zS
23 eqid BaseH=BaseH
24 2 fvexi XV
25 24 13 ssexi NV
26 4 3 ressplusg NV+˙=+H
27 25 26 ax-mp +˙=+H
28 23 27 isnsg SNrmSGrpHSSubGrpHzBaseHwBaseHz+˙wSw+˙zS
29 12 22 28 sylanbrc SSubGrpGSNrmSGrpH