| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0constr.1 |
|
| 2 |
|
eleq1 |
|
| 3 |
|
eleq1 |
|
| 4 |
|
eleq1 |
|
| 5 |
|
eleq1 |
|
| 6 |
|
peano1 |
|
| 7 |
6
|
a1i |
|
| 8 |
|
fveq2 |
|
| 9 |
8
|
eleq2d |
|
| 10 |
9
|
adantl |
|
| 11 |
|
c0ex |
|
| 12 |
11
|
prid1 |
|
| 13 |
12
|
a1i |
|
| 14 |
|
constrcbvlem |
|
| 15 |
14
|
constr0 |
|
| 16 |
13 15
|
eleqtrrdi |
|
| 17 |
7 10 16
|
rspcedvd |
|
| 18 |
14
|
isconstr |
|
| 19 |
17 18
|
sylibr |
|
| 20 |
19
|
ad2antrr |
|
| 21 |
8
|
eleq2d |
|
| 22 |
21
|
adantl |
|
| 23 |
|
1ex |
|
| 24 |
23
|
prid2 |
|
| 25 |
24
|
a1i |
|
| 26 |
25 15
|
eleqtrrdi |
|
| 27 |
7 22 26
|
rspcedvd |
|
| 28 |
14
|
isconstr |
|
| 29 |
27 28
|
sylibr |
|
| 30 |
29
|
ad2antrr |
|
| 31 |
|
simpr |
|
| 32 |
|
peano2nn0 |
|
| 33 |
32
|
ad2antlr |
|
| 34 |
33
|
nn0red |
|
| 35 |
34
|
recnd |
|
| 36 |
|
nn0cn |
|
| 37 |
|
1cnd |
|
| 38 |
36 37
|
addcld |
|
| 39 |
37
|
subid1d |
|
| 40 |
39 37
|
eqeltrd |
|
| 41 |
38 40
|
mulcld |
|
| 42 |
41
|
addlidd |
|
| 43 |
39
|
oveq2d |
|
| 44 |
38
|
mulridd |
|
| 45 |
42 43 44
|
3eqtrrd |
|
| 46 |
45
|
ad2antlr |
|
| 47 |
36 37
|
pncan2d |
|
| 48 |
47 39
|
eqtr4d |
|
| 49 |
48
|
fveq2d |
|
| 50 |
49
|
ad2antlr |
|
| 51 |
20 30 31 30 20 34 35 46 50
|
constrlccl |
|
| 52 |
2 3 4 5 19 51
|
nn0indd |
|
| 53 |
1 52
|
mpdan |
|