Metamath Proof Explorer


Theorem nn0ledivnn

Description: Division of a nonnegative integer by a positive integer is less than or equal to the integer. (Contributed by AV, 19-Jun-2021)

Ref Expression
Assertion nn0ledivnn A0BABA

Proof

Step Hyp Ref Expression
1 elnn0 A0AA=0
2 nnge1 B1B
3 2 adantl AB1B
4 nnrp BB+
5 nnledivrp AB+1BABA
6 4 5 sylan2 AB1BABA
7 3 6 mpbid ABABA
8 7 ex ABABA
9 nncn BB
10 nnne0 BB0
11 9 10 jca BBB0
12 11 adantl A=0BBB0
13 div0 BB00B=0
14 12 13 syl A=0B0B=0
15 0le0 00
16 14 15 eqbrtrdi A=0B0B0
17 oveq1 A=0AB=0B
18 id A=0A=0
19 17 18 breq12d A=0ABA0B0
20 19 adantr A=0BABA0B0
21 16 20 mpbird A=0BABA
22 21 ex A=0BABA
23 8 22 jaoi AA=0BABA
24 1 23 sylbi A0BABA
25 24 imp A0BABA