Metamath Proof Explorer


Theorem nn0lt2

Description: A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018)

Ref Expression
Assertion nn0lt2 N0N<2N=0N=1

Proof

Step Hyp Ref Expression
1 olc N=1N=0N=1
2 1 a1d N=1N0N<2N=0N=1
3 nn0z N0N
4 2z 2
5 zltlem1 N2N<2N21
6 3 4 5 sylancl N0N<2N21
7 2m1e1 21=1
8 7 breq2i N21N1
9 6 8 bitrdi N0N<2N1
10 necom N11N
11 nn0re N0N
12 1re 1
13 ltlen N1N<1N11N
14 11 12 13 sylancl N0N<1N11N
15 nn0lt10b N0N<1N=0
16 15 biimpa N0N<1N=0
17 16 orcd N0N<1N=0N=1
18 17 ex N0N<1N=0N=1
19 14 18 sylbird N0N11NN=0N=1
20 19 expd N0N11NN=0N=1
21 10 20 syl7bi N0N1N1N=0N=1
22 9 21 sylbid N0N<2N1N=0N=1
23 22 imp N0N<2N1N=0N=1
24 23 com12 N1N0N<2N=0N=1
25 2 24 pm2.61ine N0N<2N=0N=1