Metamath Proof Explorer


Theorem nn0mnd

Description: The set of nonnegative integers under (complex) addition is a monoid. Example in Lang p. 6. Remark: M could have also been written as ` ( CCfld |``s NN0 ) ` . (Contributed by AV, 27-Dec-2023)

Ref Expression
Hypothesis nn0mnd.g M=Basendx0+ndx+
Assertion nn0mnd MMnd

Proof

Step Hyp Ref Expression
1 nn0mnd.g M=Basendx0+ndx+
2 nn0addcl x0y0x+y0
3 nn0cn x0x
4 nn0cn y0y
5 nn0cn z0z
6 3 4 5 3anim123i x0y0z0xyz
7 6 3expa x0y0z0xyz
8 addass xyzx+y+z=x+y+z
9 7 8 syl x0y0z0x+y+z=x+y+z
10 9 ralrimiva x0y0z0x+y+z=x+y+z
11 2 10 jca x0y0x+y0z0x+y+z=x+y+z
12 11 rgen2 x0y0x+y0z0x+y+z=x+y+z
13 c0ex 0V
14 eleq1 e=0e000
15 oveq1 e=0e+x=0+x
16 15 eqeq1d e=0e+x=x0+x=x
17 oveq2 e=0x+e=x+0
18 17 eqeq1d e=0x+e=xx+0=x
19 16 18 anbi12d e=0e+x=xx+e=x0+x=xx+0=x
20 19 ralbidv e=0x0e+x=xx+e=xx00+x=xx+0=x
21 14 20 anbi12d e=0e0x0e+x=xx+e=x00x00+x=xx+0=x
22 0nn0 00
23 3 addlidd x00+x=x
24 3 addridd x0x+0=x
25 23 24 jca x00+x=xx+0=x
26 25 rgen x00+x=xx+0=x
27 22 26 pm3.2i 00x00+x=xx+0=x
28 13 21 27 ceqsexv2d ee0x0e+x=xx+e=x
29 df-rex e0x0e+x=xx+e=xee0x0e+x=xx+e=x
30 28 29 mpbir e0x0e+x=xx+e=x
31 12 30 pm3.2i x0y0x+y0z0x+y+z=x+y+ze0x0e+x=xx+e=x
32 nn0ex 0V
33 1 grpbase 0V0=BaseM
34 32 33 ax-mp 0=BaseM
35 addex +V
36 1 grpplusg +V+=+M
37 35 36 ax-mp +=+M
38 34 37 ismnd MMndx0y0x+y0z0x+y+z=x+y+ze0x0e+x=xx+e=x
39 31 38 mpbir MMnd