Description: The set of nonnegative integers under (complex) addition is a monoid. Example in Lang p. 6. Remark: M could have also been written as ` ( CCfld |``s NN0 ) ` . (Contributed by AV, 27-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nn0mnd.g | |
|
Assertion | nn0mnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0mnd.g | |
|
2 | nn0addcl | |
|
3 | nn0cn | |
|
4 | nn0cn | |
|
5 | nn0cn | |
|
6 | 3 4 5 | 3anim123i | |
7 | 6 | 3expa | |
8 | addass | |
|
9 | 7 8 | syl | |
10 | 9 | ralrimiva | |
11 | 2 10 | jca | |
12 | 11 | rgen2 | |
13 | c0ex | |
|
14 | eleq1 | |
|
15 | oveq1 | |
|
16 | 15 | eqeq1d | |
17 | oveq2 | |
|
18 | 17 | eqeq1d | |
19 | 16 18 | anbi12d | |
20 | 19 | ralbidv | |
21 | 14 20 | anbi12d | |
22 | 0nn0 | |
|
23 | 3 | addlidd | |
24 | 3 | addridd | |
25 | 23 24 | jca | |
26 | 25 | rgen | |
27 | 22 26 | pm3.2i | |
28 | 13 21 27 | ceqsexv2d | |
29 | df-rex | |
|
30 | 28 29 | mpbir | |
31 | 12 30 | pm3.2i | |
32 | nn0ex | |
|
33 | 1 | grpbase | |
34 | 32 33 | ax-mp | |
35 | addex | |
|
36 | 1 | grpplusg | |
37 | 35 36 | ax-mp | |
38 | 34 37 | ismnd | |
39 | 31 38 | mpbir | |