Metamath Proof Explorer


Theorem norm1exi

Description: A normalized vector exists in a subspace iff the subspace has a nonzero vector. (Contributed by NM, 9-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypothesis norm1ex.1 HS
Assertion norm1exi xHx0yHnormy=1

Proof

Step Hyp Ref Expression
1 norm1ex.1 HS
2 neeq1 x=zx0z0
3 2 cbvrexvw xHx0zHz0
4 1 sheli zHz
5 normcl znormz
6 4 5 syl zHnormz
7 6 adantr zHz0normz
8 normne0 znormz0z0
9 4 8 syl zHnormz0z0
10 9 biimpar zHz0normz0
11 7 10 rereccld zHz01normz
12 11 recnd zHz01normz
13 simpl zHz0zH
14 shmulcl HS1normzzH1normzzH
15 1 14 mp3an1 1normzzH1normzzH
16 12 13 15 syl2anc zHz01normzzH
17 norm1 zz0norm1normzz=1
18 4 17 sylan zHz0norm1normzz=1
19 fveqeq2 y=1normzznormy=1norm1normzz=1
20 19 rspcev 1normzzHnorm1normzz=1yHnormy=1
21 16 18 20 syl2anc zHz0yHnormy=1
22 21 rexlimiva zHz0yHnormy=1
23 ax-1ne0 10
24 23 neii ¬1=0
25 eqeq1 normy=1normy=01=0
26 24 25 mtbiri normy=1¬normy=0
27 1 sheli yHy
28 norm-i ynormy=0y=0
29 27 28 syl yHnormy=0y=0
30 29 necon3bbid yH¬normy=0y0
31 26 30 imbitrid yHnormy=1y0
32 31 reximia yHnormy=1yHy0
33 neeq1 y=zy0z0
34 33 cbvrexvw yHy0zHz0
35 32 34 sylib yHnormy=1zHz0
36 22 35 impbii zHz0yHnormy=1
37 3 36 bitri xHx0yHnormy=1