Description: A normalized vector exists in a subspace iff the subspace has a nonzero vector. (Contributed by NM, 9-Apr-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | norm1ex.1 | |
|
Assertion | norm1exi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | norm1ex.1 | |
|
2 | neeq1 | |
|
3 | 2 | cbvrexvw | |
4 | 1 | sheli | |
5 | normcl | |
|
6 | 4 5 | syl | |
7 | 6 | adantr | |
8 | normne0 | |
|
9 | 4 8 | syl | |
10 | 9 | biimpar | |
11 | 7 10 | rereccld | |
12 | 11 | recnd | |
13 | simpl | |
|
14 | shmulcl | |
|
15 | 1 14 | mp3an1 | |
16 | 12 13 15 | syl2anc | |
17 | norm1 | |
|
18 | 4 17 | sylan | |
19 | fveqeq2 | |
|
20 | 19 | rspcev | |
21 | 16 18 20 | syl2anc | |
22 | 21 | rexlimiva | |
23 | ax-1ne0 | |
|
24 | 23 | neii | |
25 | eqeq1 | |
|
26 | 24 25 | mtbiri | |
27 | 1 | sheli | |
28 | norm-i | |
|
29 | 27 28 | syl | |
30 | 29 | necon3bbid | |
31 | 26 30 | imbitrid | |
32 | 31 | reximia | |
33 | neeq1 | |
|
34 | 33 | cbvrexvw | |
35 | 32 34 | sylib | |
36 | 22 35 | impbii | |
37 | 3 36 | bitri | |