Metamath Proof Explorer


Theorem normcan

Description: Cancellation-type law that "extracts" a vector A from its inner product with a proportional vector B . (Contributed by NM, 18-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion normcan BB0AspanBAihBnormB2B=A

Proof

Step Hyp Ref Expression
1 elspansn BAspanBxA=xB
2 1 adantr BB0AspanBxA=xB
3 oveq1 A=xBAihB=xBihB
4 simpr Bxx
5 simpl BxB
6 ax-his3 xBBxBihB=xBihB
7 4 5 5 6 syl3anc BxxBihB=xBihB
8 3 7 sylan9eqr BxA=xBAihB=xBihB
9 normsq BnormB2=BihB
10 9 ad2antrr BxA=xBnormB2=BihB
11 8 10 oveq12d BxA=xBAihBnormB2=xBihBBihB
12 11 adantllr BB0xA=xBAihBnormB2=xBihBBihB
13 simpr BB0xx
14 hicl BBBihB
15 14 anidms BBihB
16 15 ad2antrr BB0xBihB
17 his6 BBihB=0B=0
18 17 necon3bid BBihB0B0
19 18 biimpar BB0BihB0
20 19 adantr BB0xBihB0
21 13 16 20 divcan4d BB0xxBihBBihB=x
22 21 adantr BB0xA=xBxBihBBihB=x
23 12 22 eqtrd BB0xA=xBAihBnormB2=x
24 23 oveq1d BB0xA=xBAihBnormB2B=xB
25 simpr BB0xA=xBA=xB
26 24 25 eqtr4d BB0xA=xBAihBnormB2B=A
27 26 rexlimdva2 BB0xA=xBAihBnormB2B=A
28 2 27 sylbid BB0AspanBAihBnormB2B=A
29 28 3impia BB0AspanBAihBnormB2B=A