| Step | Hyp | Ref | Expression | 
						
							| 1 |  | normcl |  | 
						
							| 2 | 1 | resqcld |  | 
						
							| 3 | 2 | recnd |  | 
						
							| 4 | 3 | addridd |  | 
						
							| 5 | 4 | adantr |  | 
						
							| 6 |  | normcl |  | 
						
							| 7 | 6 | sqge0d |  | 
						
							| 8 | 7 | adantl |  | 
						
							| 9 | 6 | resqcld |  | 
						
							| 10 |  | 0re |  | 
						
							| 11 |  | leadd2 |  | 
						
							| 12 | 10 11 | mp3an1 |  | 
						
							| 13 | 9 2 12 | syl2anr |  | 
						
							| 14 | 8 13 | mpbid |  | 
						
							| 15 | 5 14 | eqbrtrrd |  | 
						
							| 16 | 15 | adantr |  | 
						
							| 17 |  | normpyth |  | 
						
							| 18 | 17 | imp |  | 
						
							| 19 | 16 18 | breqtrrd |  | 
						
							| 20 | 19 | ex |  | 
						
							| 21 | 1 | adantr |  | 
						
							| 22 |  | hvaddcl |  | 
						
							| 23 |  | normcl |  | 
						
							| 24 | 22 23 | syl |  | 
						
							| 25 |  | normge0 |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 |  | normge0 |  | 
						
							| 28 | 22 27 | syl |  | 
						
							| 29 | 21 24 26 28 | le2sqd |  | 
						
							| 30 | 20 29 | sylibrd |  |