Metamath Proof Explorer


Theorem nsgqusf1o

Description: The canonical projection homomorphism E defines a bijective correspondence between the set S of subgroups of G containing a normal subgroup N and the subgroups of the quotient group G / N . This theorem is sometimes called the correspondence theorem, or the fourth isomorphism theorem. (Contributed by Thierry Arnoux, 4-Aug-2024)

Ref Expression
Hypotheses nsgqusf1o.b B=BaseG
nsgqusf1o.s S=hSubGrpG|Nh
nsgqusf1o.t T=SubGrpQ
nsgqusf1o.1 ˙=toIncS
nsgqusf1o.2 No typesetting found for |- .c_ = ( le ` ( toInc ` T ) ) with typecode |-
nsgqusf1o.q Q=G/𝑠G~QGN
nsgqusf1o.p ˙=LSSumG
nsgqusf1o.e E=hSranxhx˙N
nsgqusf1o.f F=fTaB|a˙Nf
nsgqusf1o.n φNNrmSGrpG
Assertion nsgqusf1o φE:S1-1 ontoT

Proof

Step Hyp Ref Expression
1 nsgqusf1o.b B=BaseG
2 nsgqusf1o.s S=hSubGrpG|Nh
3 nsgqusf1o.t T=SubGrpQ
4 nsgqusf1o.1 ˙=toIncS
5 nsgqusf1o.2 Could not format .c_ = ( le ` ( toInc ` T ) ) : No typesetting found for |- .c_ = ( le ` ( toInc ` T ) ) with typecode |-
6 nsgqusf1o.q Q=G/𝑠G~QGN
7 nsgqusf1o.p ˙=LSSumG
8 nsgqusf1o.e E=hSranxhx˙N
9 nsgqusf1o.f F=fTaB|a˙Nf
10 nsgqusf1o.n φNNrmSGrpG
11 eqid Could not format ( ( toInc ` S ) MGalConn ( toInc ` T ) ) = ( ( toInc ` S ) MGalConn ( toInc ` T ) ) : No typesetting found for |- ( ( toInc ` S ) MGalConn ( toInc ` T ) ) = ( ( toInc ` S ) MGalConn ( toInc ` T ) ) with typecode |-
12 fvex SubGrpGV
13 2 12 rabex2 SV
14 eqid toIncS=toIncS
15 14 ipobas SVS=BasetoIncS
16 13 15 ax-mp S=BasetoIncS
17 3 fvexi TV
18 eqid toIncT=toIncT
19 18 ipobas TVT=BasetoIncT
20 17 19 ax-mp T=BasetoIncT
21 14 ipopos toIncSPoset
22 21 a1i φtoIncSPoset
23 18 ipopos toIncTPoset
24 23 a1i φtoIncTPoset
25 1 2 3 11 14 18 6 7 8 9 10 nsgmgc Could not format ( ph -> E ( ( toInc ` S ) MGalConn ( toInc ` T ) ) F ) : No typesetting found for |- ( ph -> E ( ( toInc ` S ) MGalConn ( toInc ` T ) ) F ) with typecode |-
26 11 16 20 4 5 22 24 25 mgcf1o Could not format ( ph -> ( E |` ran F ) Isom .<_ , .c_ ( ran F , ran E ) ) : No typesetting found for |- ( ph -> ( E |` ran F ) Isom .<_ , .c_ ( ran F , ran E ) ) with typecode |-
27 isof1o Could not format ( ( E |` ran F ) Isom .<_ , .c_ ( ran F , ran E ) -> ( E |` ran F ) : ran F -1-1-onto-> ran E ) : No typesetting found for |- ( ( E |` ran F ) Isom .<_ , .c_ ( ran F , ran E ) -> ( E |` ran F ) : ran F -1-1-onto-> ran E ) with typecode |-
28 26 27 syl φEranF:ranF1-1 ontoranE
29 1 2 3 4 5 6 7 8 9 10 nsgqusf1olem3 φranF=S
30 29 reseq2d φEranF=ES
31 nfv hφ
32 vex hV
33 32 mptex xhx˙NV
34 33 rnex ranxhx˙NV
35 34 a1i φhSranxhx˙NV
36 31 35 8 fnmptd φEFnS
37 fnresdm EFnSES=E
38 36 37 syl φES=E
39 30 38 eqtrd φEranF=E
40 1 2 3 4 5 6 7 8 9 10 nsgqusf1olem2 φranE=T
41 39 29 40 f1oeq123d φEranF:ranF1-1 ontoranEE:S1-1 ontoT
42 28 41 mpbid φE:S1-1 ontoT