Metamath Proof Explorer


Theorem nsgqusf1o

Description: The canonical projection homomorphism E defines a bijective correspondence between the set S of subgroups of G containing a normal subgroup N and the subgroups of the quotient group G / N . This theorem is sometimes called the correspondence theorem, or the fourth isomorphism theorem. (Contributed by Thierry Arnoux, 4-Aug-2024)

Ref Expression
Hypotheses nsgqusf1o.b B = Base G
nsgqusf1o.s S = h SubGrp G | N h
nsgqusf1o.t T = SubGrp Q
nsgqusf1o.1 ˙ = toInc S
nsgqusf1o.2 No typesetting found for |- .c_ = ( le ` ( toInc ` T ) ) with typecode |-
nsgqusf1o.q Q = G / 𝑠 G ~ QG N
nsgqusf1o.p ˙ = LSSum G
nsgqusf1o.e E = h S ran x h x ˙ N
nsgqusf1o.f F = f T a B | a ˙ N f
nsgqusf1o.n φ N NrmSGrp G
Assertion nsgqusf1o φ E : S 1-1 onto T

Proof

Step Hyp Ref Expression
1 nsgqusf1o.b B = Base G
2 nsgqusf1o.s S = h SubGrp G | N h
3 nsgqusf1o.t T = SubGrp Q
4 nsgqusf1o.1 ˙ = toInc S
5 nsgqusf1o.2 Could not format .c_ = ( le ` ( toInc ` T ) ) : No typesetting found for |- .c_ = ( le ` ( toInc ` T ) ) with typecode |-
6 nsgqusf1o.q Q = G / 𝑠 G ~ QG N
7 nsgqusf1o.p ˙ = LSSum G
8 nsgqusf1o.e E = h S ran x h x ˙ N
9 nsgqusf1o.f F = f T a B | a ˙ N f
10 nsgqusf1o.n φ N NrmSGrp G
11 eqid Could not format ( ( toInc ` S ) MGalConn ( toInc ` T ) ) = ( ( toInc ` S ) MGalConn ( toInc ` T ) ) : No typesetting found for |- ( ( toInc ` S ) MGalConn ( toInc ` T ) ) = ( ( toInc ` S ) MGalConn ( toInc ` T ) ) with typecode |-
12 fvex SubGrp G V
13 2 12 rabex2 S V
14 eqid toInc S = toInc S
15 14 ipobas S V S = Base toInc S
16 13 15 ax-mp S = Base toInc S
17 3 fvexi T V
18 eqid toInc T = toInc T
19 18 ipobas T V T = Base toInc T
20 17 19 ax-mp T = Base toInc T
21 14 ipopos toInc S Poset
22 21 a1i φ toInc S Poset
23 18 ipopos toInc T Poset
24 23 a1i φ toInc T Poset
25 1 2 3 11 14 18 6 7 8 9 10 nsgmgc Could not format ( ph -> E ( ( toInc ` S ) MGalConn ( toInc ` T ) ) F ) : No typesetting found for |- ( ph -> E ( ( toInc ` S ) MGalConn ( toInc ` T ) ) F ) with typecode |-
26 11 16 20 4 5 22 24 25 mgcf1o Could not format ( ph -> ( E |` ran F ) Isom .<_ , .c_ ( ran F , ran E ) ) : No typesetting found for |- ( ph -> ( E |` ran F ) Isom .<_ , .c_ ( ran F , ran E ) ) with typecode |-
27 isof1o Could not format ( ( E |` ran F ) Isom .<_ , .c_ ( ran F , ran E ) -> ( E |` ran F ) : ran F -1-1-onto-> ran E ) : No typesetting found for |- ( ( E |` ran F ) Isom .<_ , .c_ ( ran F , ran E ) -> ( E |` ran F ) : ran F -1-1-onto-> ran E ) with typecode |-
28 26 27 syl φ E ran F : ran F 1-1 onto ran E
29 1 2 3 4 5 6 7 8 9 10 nsgqusf1olem3 φ ran F = S
30 29 reseq2d φ E ran F = E S
31 nfv h φ
32 vex h V
33 32 mptex x h x ˙ N V
34 33 rnex ran x h x ˙ N V
35 34 a1i φ h S ran x h x ˙ N V
36 31 35 8 fnmptd φ E Fn S
37 fnresdm E Fn S E S = E
38 36 37 syl φ E S = E
39 30 38 eqtrd φ E ran F = E
40 1 2 3 4 5 6 7 8 9 10 nsgqusf1olem2 φ ran E = T
41 39 29 40 f1oeq123d φ E ran F : ran F 1-1 onto ran E E : S 1-1 onto T
42 28 41 mpbid φ E : S 1-1 onto T