Description: A non-trivially converging infinite product converges. (Contributed by Scott Fenton, 18-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ntrivcvg.1 | |
|
ntrivcvg.2 | |
||
ntrivcvg.3 | |
||
Assertion | ntrivcvg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrivcvg.1 | |
|
2 | ntrivcvg.2 | |
|
3 | ntrivcvg.3 | |
|
4 | uzm1 | |
|
5 | 4 1 | eleq2s | |
6 | 5 | ad2antlr | |
7 | seqeq1 | |
|
8 | 7 | breq1d | |
9 | seqex | |
|
10 | vex | |
|
11 | 9 10 | breldm | |
12 | 8 11 | syl6bi | |
13 | 12 | adantld | |
14 | simplr | |
|
15 | 3 | ad5ant15 | |
16 | uzssz | |
|
17 | 1 16 | eqsstri | |
18 | simplr | |
|
19 | 17 18 | sselid | |
20 | 19 | zcnd | |
21 | 1cnd | |
|
22 | 20 21 | npcand | |
23 | 22 | seqeq1d | |
24 | 23 | breq1d | |
25 | 24 | biimpar | |
26 | 1 14 15 25 | clim2prod | |
27 | ovex | |
|
28 | 9 27 | breldm | |
29 | 26 28 | syl | |
30 | 29 | an32s | |
31 | 30 | expcom | |
32 | 1 | eqcomi | |
33 | 31 32 | eleq2s | |
34 | 13 33 | jaoi | |
35 | 6 34 | mpcom | |
36 | 35 | ex | |
37 | 36 | adantld | |
38 | 37 | exlimdv | |
39 | 38 | rexlimdva | |
40 | 2 39 | mpd | |