Metamath Proof Explorer


Theorem ntrivcvg

Description: A non-trivially converging infinite product converges. (Contributed by Scott Fenton, 18-Dec-2017)

Ref Expression
Hypotheses ntrivcvg.1 Z=M
ntrivcvg.2 φnZyy0seqn×Fy
ntrivcvg.3 φkZFk
Assertion ntrivcvg φseqM×Fdom

Proof

Step Hyp Ref Expression
1 ntrivcvg.1 Z=M
2 ntrivcvg.2 φnZyy0seqn×Fy
3 ntrivcvg.3 φkZFk
4 uzm1 nMn=Mn1M
5 4 1 eleq2s nZn=Mn1M
6 5 ad2antlr φnZseqn×Fyn=Mn1M
7 seqeq1 n=Mseqn×F=seqM×F
8 7 breq1d n=Mseqn×FyseqM×Fy
9 seqex seqM×FV
10 vex yV
11 9 10 breldm seqM×FyseqM×Fdom
12 8 11 syl6bi n=Mseqn×FyseqM×Fdom
13 12 adantld n=MφnZseqn×FyseqM×Fdom
14 simplr φnZn1Zseqn×Fyn1Z
15 3 ad5ant15 φnZn1Zseqn×FykZFk
16 uzssz M
17 1 16 eqsstri Z
18 simplr φnZn1ZnZ
19 17 18 sselid φnZn1Zn
20 19 zcnd φnZn1Zn
21 1cnd φnZn1Z1
22 20 21 npcand φnZn1Zn-1+1=n
23 22 seqeq1d φnZn1Zseqn-1+1×F=seqn×F
24 23 breq1d φnZn1Zseqn-1+1×Fyseqn×Fy
25 24 biimpar φnZn1Zseqn×Fyseqn-1+1×Fy
26 1 14 15 25 clim2prod φnZn1Zseqn×FyseqM×FseqM×Fn1y
27 ovex seqM×Fn1yV
28 9 27 breldm seqM×FseqM×Fn1yseqM×Fdom
29 26 28 syl φnZn1Zseqn×FyseqM×Fdom
30 29 an32s φnZseqn×Fyn1ZseqM×Fdom
31 30 expcom n1ZφnZseqn×FyseqM×Fdom
32 1 eqcomi M=Z
33 31 32 eleq2s n1MφnZseqn×FyseqM×Fdom
34 13 33 jaoi n=Mn1MφnZseqn×FyseqM×Fdom
35 6 34 mpcom φnZseqn×FyseqM×Fdom
36 35 ex φnZseqn×FyseqM×Fdom
37 36 adantld φnZy0seqn×FyseqM×Fdom
38 37 exlimdv φnZyy0seqn×FyseqM×Fdom
39 38 rexlimdva φnZyy0seqn×FyseqM×Fdom
40 2 39 mpd φseqM×Fdom