Metamath Proof Explorer


Theorem ntrrn

Description: The range of the interior function of a topology a subset of the open sets of the topology. (Contributed by RP, 22-Apr-2021)

Ref Expression
Hypotheses ntrrn.x X=J
ntrrn.i I=intJ
Assertion ntrrn JTopranIJ

Proof

Step Hyp Ref Expression
1 ntrrn.x X=J
2 ntrrn.i I=intJ
3 2 rneqi ranI=ranintJ
4 vpwex 𝒫sV
5 4 inex2 J𝒫sV
6 5 uniex J𝒫sV
7 6 rgenw s𝒫XJ𝒫sV
8 nfcv _s𝒫X
9 8 fnmptf s𝒫XJ𝒫sVs𝒫XJ𝒫sFn𝒫X
10 7 9 mp1i JTops𝒫XJ𝒫sFn𝒫X
11 1 ntrfval JTopintJ=s𝒫XJ𝒫s
12 11 fneq1d JTopintJFn𝒫Xs𝒫XJ𝒫sFn𝒫X
13 10 12 mpbird JTopintJFn𝒫X
14 elpwi s𝒫XsX
15 1 ntropn JTopsXintJsJ
16 15 ex JTopsXintJsJ
17 14 16 syl5 JTops𝒫XintJsJ
18 17 ralrimiv JTops𝒫XintJsJ
19 fnfvrnss intJFn𝒫Xs𝒫XintJsJranintJJ
20 13 18 19 syl2anc JTopranintJJ
21 3 20 eqsstrid JTopranIJ