Metamath Proof Explorer


Theorem numclwwlk2

Description: Statement 10 in Huneke p. 2: "If n > 1, then the number of closed n-walks v(0) ... v(n-2) v(n-1) v(n) from v = v(0) = v(n) ... with v(n-2) =/= v is k^(n-2) - f(n-2)." According to rusgrnumwlkg , we have k^(n-2) different walks of length (n-2): v(0) ... v(n-2). From this number, the number of closed walks of length (n-2), which is f(n-2) per definition, must be subtracted, because for these walks v(n-2) =/= v(0) = v would hold. Because of the friendship condition, there is exactly one vertex v(n-1) which is a neighbor of v(n-2) as well as of v(n)=v=v(0), because v(n-2) and v(n)=v are different, so the number of walks v(0) ... v(n-2) is identical with the number of walks v(0) ... v(n), that means each (not closed) walk v(0) ... v(n-2) can be extended by two edges to a closed walk v(0) ... v(n)=v=v(0) in exactly one way. (Contributed by Alexander van der Vekens, 6-Oct-2018) (Revised by AV, 31-May-2021) (Revised by AV, 1-May-2022)

Ref Expression
Hypotheses numclwwlk.v V=VtxG
numclwwlk.q Q=vV,nwnWWalksNG|w0=vlastSwv
numclwwlk.h H=vV,n2wvClWWalksNOnGn|wn2v
Assertion numclwwlk2 GRegUSGraphKGFriendGraphVFinXVN3XHN=KN2XClWWalksNOnGN2

Proof

Step Hyp Ref Expression
1 numclwwlk.v V=VtxG
2 numclwwlk.q Q=vV,nwnWWalksNG|w0=vlastSwv
3 numclwwlk.h H=vV,n2wvClWWalksNOnGn|wn2v
4 eluzelcn N3N
5 2cnd N32
6 4 5 npcand N3N-2+2=N
7 6 eqcomd N3N=N-2+2
8 7 3ad2ant3 VFinXVN3N=N-2+2
9 8 adantl GRegUSGraphKGFriendGraphVFinXVN3N=N-2+2
10 9 oveq2d GRegUSGraphKGFriendGraphVFinXVN3XHN=XHN-2+2
11 10 fveq2d GRegUSGraphKGFriendGraphVFinXVN3XHN=XHN-2+2
12 simplr GRegUSGraphKGFriendGraphVFinXVN3GFriendGraph
13 simpr2 GRegUSGraphKGFriendGraphVFinXVN3XV
14 uz3m2nn N3N2
15 14 3ad2ant3 VFinXVN3N2
16 15 adantl GRegUSGraphKGFriendGraphVFinXVN3N2
17 1 2 3 numclwwlk2lem3 GFriendGraphXVN2XQN2=XHN-2+2
18 12 13 16 17 syl3anc GRegUSGraphKGFriendGraphVFinXVN3XQN2=XHN-2+2
19 simpl GRegUSGraphKGFriendGraphGRegUSGraphK
20 simp1 VFinXVN3VFin
21 19 20 anim12i GRegUSGraphKGFriendGraphVFinXVN3GRegUSGraphKVFin
22 14 anim2i XVN3XVN2
23 22 3adant1 VFinXVN3XVN2
24 23 adantl GRegUSGraphKGFriendGraphVFinXVN3XVN2
25 1 2 numclwwlkqhash GRegUSGraphKVFinXVN2XQN2=KN2XClWWalksNOnGN2
26 21 24 25 syl2anc GRegUSGraphKGFriendGraphVFinXVN3XQN2=KN2XClWWalksNOnGN2
27 11 18 26 3eqtr2d GRegUSGraphKGFriendGraphVFinXVN3XHN=KN2XClWWalksNOnGN2