Metamath Proof Explorer


Theorem numiunnum

Description: An indexed union of sets is numerable if its index set is numerable and there exists a collection of well-orderings on its members. (Contributed by Matthew House, 23-Aug-2025)

Ref Expression
Assertion numiunnum A dom card x A B V S We B x A B dom card

Proof

Step Hyp Ref Expression
1 dfac8b A dom card s s We A
2 1 adantr A dom card x A B V S We B s s We A
3 simpll A dom card x A B V S We B s We A A dom card
4 simplr A dom card x A B V S We B s We A x A B V S We B
5 r19.26 x A B V S We B x A B V x A S We B
6 4 5 sylib A dom card x A B V S We B s We A x A B V x A S We B
7 6 simpld A dom card x A B V S We B s We A x A B V
8 iunexg A dom card x A B V x A B V
9 3 7 8 syl2anc A dom card x A B V S We B s We A x A B V
10 9 9 xpexd A dom card x A B V S We B s We A x A B × x A B V
11 opabssxp y z | y x A B z x A B w x A B ι u x A | w B | v x A | w B ¬ v s u y s w x A B ι u x A | w B | v x A | w B ¬ v s u z w x A B ι u x A | w B | v x A | w B ¬ v s u y = w x A B ι u x A | w B | v x A | w B ¬ v s u z y w x A B ι u x A | w B | v x A | w B ¬ v s u y / x S z x A B × x A B
12 11 a1i A dom card x A B V S We B s We A y z | y x A B z x A B w x A B ι u x A | w B | v x A | w B ¬ v s u y s w x A B ι u x A | w B | v x A | w B ¬ v s u z w x A B ι u x A | w B | v x A | w B ¬ v s u y = w x A B ι u x A | w B | v x A | w B ¬ v s u z y w x A B ι u x A | w B | v x A | w B ¬ v s u y / x S z x A B × x A B
13 10 12 ssexd A dom card x A B V S We B s We A y z | y x A B z x A B w x A B ι u x A | w B | v x A | w B ¬ v s u y s w x A B ι u x A | w B | v x A | w B ¬ v s u z w x A B ι u x A | w B | v x A | w B ¬ v s u y = w x A B ι u x A | w B | v x A | w B ¬ v s u z y w x A B ι u x A | w B | v x A | w B ¬ v s u y / x S z V
14 simpr A dom card x A B V S We B s We A s We A
15 exse A dom card s Se A
16 15 ad2antrr A dom card x A B V S We B s We A s Se A
17 6 simprd A dom card x A B V S We B s We A x A S We B
18 eqid w x A B ι u x A | w B | v x A | w B ¬ v s u = w x A B ι u x A | w B | v x A | w B ¬ v s u
19 eqid y z | y x A B z x A B w x A B ι u x A | w B | v x A | w B ¬ v s u y s w x A B ι u x A | w B | v x A | w B ¬ v s u z w x A B ι u x A | w B | v x A | w B ¬ v s u y = w x A B ι u x A | w B | v x A | w B ¬ v s u z y w x A B ι u x A | w B | v x A | w B ¬ v s u y / x S z = y z | y x A B z x A B w x A B ι u x A | w B | v x A | w B ¬ v s u y s w x A B ι u x A | w B | v x A | w B ¬ v s u z w x A B ι u x A | w B | v x A | w B ¬ v s u y = w x A B ι u x A | w B | v x A | w B ¬ v s u z y w x A B ι u x A | w B | v x A | w B ¬ v s u y / x S z
20 18 19 weiunwe s We A s Se A x A S We B y z | y x A B z x A B w x A B ι u x A | w B | v x A | w B ¬ v s u y s w x A B ι u x A | w B | v x A | w B ¬ v s u z w x A B ι u x A | w B | v x A | w B ¬ v s u y = w x A B ι u x A | w B | v x A | w B ¬ v s u z y w x A B ι u x A | w B | v x A | w B ¬ v s u y / x S z We x A B
21 14 16 17 20 syl3anc A dom card x A B V S We B s We A y z | y x A B z x A B w x A B ι u x A | w B | v x A | w B ¬ v s u y s w x A B ι u x A | w B | v x A | w B ¬ v s u z w x A B ι u x A | w B | v x A | w B ¬ v s u y = w x A B ι u x A | w B | v x A | w B ¬ v s u z y w x A B ι u x A | w B | v x A | w B ¬ v s u y / x S z We x A B
22 weeq1 t = y z | y x A B z x A B w x A B ι u x A | w B | v x A | w B ¬ v s u y s w x A B ι u x A | w B | v x A | w B ¬ v s u z w x A B ι u x A | w B | v x A | w B ¬ v s u y = w x A B ι u x A | w B | v x A | w B ¬ v s u z y w x A B ι u x A | w B | v x A | w B ¬ v s u y / x S z t We x A B y z | y x A B z x A B w x A B ι u x A | w B | v x A | w B ¬ v s u y s w x A B ι u x A | w B | v x A | w B ¬ v s u z w x A B ι u x A | w B | v x A | w B ¬ v s u y = w x A B ι u x A | w B | v x A | w B ¬ v s u z y w x A B ι u x A | w B | v x A | w B ¬ v s u y / x S z We x A B
23 13 21 22 spcedv A dom card x A B V S We B s We A t t We x A B
24 2 23 exlimddv A dom card x A B V S We B t t We x A B
25 ween x A B dom card t t We x A B
26 24 25 sylibr A dom card x A B V S We B x A B dom card