| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nvmul0or.1 |
|
| 2 |
|
nvmul0or.4 |
|
| 3 |
|
nvmul0or.6 |
|
| 4 |
|
df-ne |
|
| 5 |
|
oveq2 |
|
| 6 |
5
|
ad2antlr |
|
| 7 |
|
recid2 |
|
| 8 |
7
|
oveq1d |
|
| 9 |
8
|
3ad2antl2 |
|
| 10 |
|
simpl1 |
|
| 11 |
|
reccl |
|
| 12 |
11
|
3ad2antl2 |
|
| 13 |
|
simpl2 |
|
| 14 |
|
simpl3 |
|
| 15 |
1 2
|
nvsass |
|
| 16 |
10 12 13 14 15
|
syl13anc |
|
| 17 |
1 2
|
nvsid |
|
| 18 |
17
|
3adant2 |
|
| 19 |
18
|
adantr |
|
| 20 |
9 16 19
|
3eqtr3d |
|
| 21 |
20
|
adantlr |
|
| 22 |
2 3
|
nvsz |
|
| 23 |
11 22
|
sylan2 |
|
| 24 |
23
|
anassrs |
|
| 25 |
24
|
3adantl3 |
|
| 26 |
25
|
adantlr |
|
| 27 |
6 21 26
|
3eqtr3d |
|
| 28 |
27
|
ex |
|
| 29 |
4 28
|
biimtrrid |
|
| 30 |
29
|
orrd |
|
| 31 |
30
|
ex |
|
| 32 |
1 2 3
|
nv0 |
|
| 33 |
|
oveq1 |
|
| 34 |
33
|
eqeq1d |
|
| 35 |
32 34
|
syl5ibrcom |
|
| 36 |
35
|
3adant2 |
|
| 37 |
2 3
|
nvsz |
|
| 38 |
|
oveq2 |
|
| 39 |
38
|
eqeq1d |
|
| 40 |
37 39
|
syl5ibrcom |
|
| 41 |
40
|
3adant3 |
|
| 42 |
36 41
|
jaod |
|
| 43 |
31 42
|
impbid |
|