Metamath Proof Explorer


Theorem nzin

Description: The intersection of the set of multiples ofm, mℤ, and those ofn, nℤ, is the set of multiples of their least common multiple. Roughly Lemma 2.1(c) of https://www.mscs.dal.ca/~selinger/3343/handouts/ideals.pdf p. 5 and Problem 1(b) of https://people.math.binghamton.edu/mazur/teach/40107/40107h16sol.pdf p. 1, with mℤ and nℤ as images of the divides relation under m andn. (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Hypotheses nzin.m φ M
nzin.n φ N
Assertion nzin φ M N = M lcm N

Proof

Step Hyp Ref Expression
1 nzin.m φ M
2 nzin.n φ N
3 dvdszrcl M n M n
4 dvdszrcl N n N n
5 3 4 anim12i M n N n M n N n
6 anandir M N n M n N n
7 5 6 sylibr M n N n M N n
8 7 ancomd M n N n n M N
9 lcmdvds n M N M n N n M lcm N n
10 9 3expb n M N M n N n M lcm N n
11 8 10 mpcom M n N n M lcm N n
12 elin n M N n M n N
13 reldvds Rel
14 elrelimasn Rel n M M n
15 13 14 ax-mp n M M n
16 elrelimasn Rel n N N n
17 13 16 ax-mp n N N n
18 15 17 anbi12i n M n N M n N n
19 12 18 bitri n M N M n N n
20 elrelimasn Rel n M lcm N M lcm N n
21 13 20 ax-mp n M lcm N M lcm N n
22 11 19 21 3imtr4i n M N n M lcm N
23 22 ssriv M N M lcm N
24 23 a1i φ M N M lcm N
25 dvdslcm M N M M lcm N N M lcm N
26 1 2 25 syl2anc φ M M lcm N N M lcm N
27 26 simpld φ M M lcm N
28 lcmcl M N M lcm N 0
29 1 2 28 syl2anc φ M lcm N 0
30 29 nn0zd φ M lcm N
31 30 1 nzss φ M lcm N M M M lcm N
32 27 31 mpbird φ M lcm N M
33 26 simprd φ N M lcm N
34 30 2 nzss φ M lcm N N N M lcm N
35 33 34 mpbird φ M lcm N N
36 32 35 ssind φ M lcm N M N
37 24 36 eqssd φ M N = M lcm N