Metamath Proof Explorer


Theorem nzin

Description: The intersection of the set of multiples ofm, mℤ, and those ofn, nℤ, is the set of multiples of their least common multiple. Roughly Lemma 2.1(c) of https://www.mscs.dal.ca/~selinger/3343/handouts/ideals.pdf p. 5 and Problem 1(b) of https://people.math.binghamton.edu/mazur/teach/40107/40107h16sol.pdf p. 1, with mℤ and nℤ as images of the divides relation under m andn. (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Hypotheses nzin.m φM
nzin.n φN
Assertion nzin φMN=MlcmN

Proof

Step Hyp Ref Expression
1 nzin.m φM
2 nzin.n φN
3 dvdszrcl MnMn
4 dvdszrcl NnNn
5 3 4 anim12i MnNnMnNn
6 anandir MNnMnNn
7 5 6 sylibr MnNnMNn
8 7 ancomd MnNnnMN
9 lcmdvds nMNMnNnMlcmNn
10 9 3expb nMNMnNnMlcmNn
11 8 10 mpcom MnNnMlcmNn
12 elin nMNnMnN
13 reldvds Rel
14 elrelimasn RelnMMn
15 13 14 ax-mp nMMn
16 elrelimasn RelnNNn
17 13 16 ax-mp nNNn
18 15 17 anbi12i nMnNMnNn
19 12 18 bitri nMNMnNn
20 elrelimasn RelnMlcmNMlcmNn
21 13 20 ax-mp nMlcmNMlcmNn
22 11 19 21 3imtr4i nMNnMlcmN
23 22 ssriv MNMlcmN
24 23 a1i φMNMlcmN
25 dvdslcm MNMMlcmNNMlcmN
26 1 2 25 syl2anc φMMlcmNNMlcmN
27 26 simpld φMMlcmN
28 lcmcl MNMlcmN0
29 1 2 28 syl2anc φMlcmN0
30 29 nn0zd φMlcmN
31 30 1 nzss φMlcmNMMMlcmN
32 27 31 mpbird φMlcmNM
33 26 simprd φNMlcmN
34 30 2 nzss φMlcmNNNMlcmN
35 33 34 mpbird φMlcmNN
36 32 35 ssind φMlcmNMN
37 24 36 eqssd φMN=MlcmN