Description: Define a bijection from A +o B to B +o A . Thus, the two are equinumerous even if they are not equal (which sometimes occurs, e.g., oancom ). (Contributed by Mario Carneiro, 30-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | oacomf1o.1 | |
|
Assertion | oacomf1o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oacomf1o.1 | |
|
2 | eqid | |
|
3 | 2 | oacomf1olem | |
4 | 3 | simpld | |
5 | eqid | |
|
6 | 5 | oacomf1olem | |
7 | 6 | ancoms | |
8 | 7 | simpld | |
9 | f1ocnv | |
|
10 | 8 9 | syl | |
11 | incom | |
|
12 | 7 | simprd | |
13 | 11 12 | eqtrid | |
14 | 3 | simprd | |
15 | f1oun | |
|
16 | 4 10 13 14 15 | syl22anc | |
17 | f1oeq1 | |
|
18 | 1 17 | ax-mp | |
19 | 16 18 | sylibr | |
20 | oarec | |
|
21 | 20 | f1oeq2d | |
22 | 19 21 | mpbird | |
23 | oarec | |
|
24 | 23 | ancoms | |
25 | uncom | |
|
26 | 24 25 | eqtrdi | |
27 | 26 | f1oeq3d | |
28 | 22 27 | mpbird | |