Description: The order of an element of a subgroup divides the order of the subgroup. (Contributed by Mario Carneiro, 16-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | odsubdvds.1 | |
|
Assertion | odsubdvds | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odsubdvds.1 | |
|
2 | eqid | |
|
3 | 2 | subggrp | |
4 | 3 | 3ad2ant1 | |
5 | 2 | subgbas | |
6 | 5 | 3ad2ant1 | |
7 | simp2 | |
|
8 | 6 7 | eqeltrrd | |
9 | simp3 | |
|
10 | 9 6 | eleqtrd | |
11 | eqid | |
|
12 | eqid | |
|
13 | 11 12 | oddvds2 | |
14 | 4 8 10 13 | syl3anc | |
15 | 2 1 12 | subgod | |
16 | 15 | 3adant2 | |
17 | 6 | fveq2d | |
18 | 14 16 17 | 3brtr4d | |