Metamath Proof Explorer


Theorem odsubdvds

Description: The order of an element of a subgroup divides the order of the subgroup. (Contributed by Mario Carneiro, 16-Jan-2015)

Ref Expression
Hypothesis odsubdvds.1 O=odG
Assertion odsubdvds SSubGrpGSFinASOAS

Proof

Step Hyp Ref Expression
1 odsubdvds.1 O=odG
2 eqid G𝑠S=G𝑠S
3 2 subggrp SSubGrpGG𝑠SGrp
4 3 3ad2ant1 SSubGrpGSFinASG𝑠SGrp
5 2 subgbas SSubGrpGS=BaseG𝑠S
6 5 3ad2ant1 SSubGrpGSFinASS=BaseG𝑠S
7 simp2 SSubGrpGSFinASSFin
8 6 7 eqeltrrd SSubGrpGSFinASBaseG𝑠SFin
9 simp3 SSubGrpGSFinASAS
10 9 6 eleqtrd SSubGrpGSFinASABaseG𝑠S
11 eqid BaseG𝑠S=BaseG𝑠S
12 eqid odG𝑠S=odG𝑠S
13 11 12 oddvds2 G𝑠SGrpBaseG𝑠SFinABaseG𝑠SodG𝑠SABaseG𝑠S
14 4 8 10 13 syl3anc SSubGrpGSFinASodG𝑠SABaseG𝑠S
15 2 1 12 subgod SSubGrpGASOA=odG𝑠SA
16 15 3adant2 SSubGrpGSFinASOA=odG𝑠SA
17 6 fveq2d SSubGrpGSFinASS=BaseG𝑠S
18 14 16 17 3brtr4d SSubGrpGSFinASOAS