Description: The lexicographic order on a function space of ordinals gives a well-ordering with order type equal to the ordinal exponential. This provides an alternate definition of the ordinal exponential. (Contributed by Mario Carneiro, 28-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cantnfs.s | |
|
cantnfs.a | |
||
cantnfs.b | |
||
oemapval.t | |
||
Assertion | oemapwe | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cantnfs.s | |
|
2 | cantnfs.a | |
|
3 | cantnfs.b | |
|
4 | oemapval.t | |
|
5 | oecl | |
|
6 | 2 3 5 | syl2anc | |
7 | eloni | |
|
8 | ordwe | |
|
9 | 6 7 8 | 3syl | |
10 | 1 2 3 4 | cantnf | |
11 | isowe | |
|
12 | 10 11 | syl | |
13 | 9 12 | mpbird | |
14 | 6 7 | syl | |
15 | isocnv | |
|
16 | 10 15 | syl | |
17 | ovex | |
|
18 | 17 | dmex | |
19 | 1 18 | eqeltri | |
20 | exse | |
|
21 | 19 20 | ax-mp | |
22 | eqid | |
|
23 | 22 | oieu | |
24 | 13 21 23 | sylancl | |
25 | 14 16 24 | mpbi2and | |
26 | 25 | simpld | |
27 | 26 | eqcomd | |
28 | 13 27 | jca | |