Metamath Proof Explorer


Theorem oemapwe

Description: The lexicographic order on a function space of ordinals gives a well-ordering with order type equal to the ordinal exponential. This provides an alternate definition of the ordinal exponential. (Contributed by Mario Carneiro, 28-May-2015)

Ref Expression
Hypotheses cantnfs.s S=domACNFB
cantnfs.a φAOn
cantnfs.b φBOn
oemapval.t T=xy|zBxzyzwBzwxw=yw
Assertion oemapwe φTWeSdomOrdIsoTS=A𝑜B

Proof

Step Hyp Ref Expression
1 cantnfs.s S=domACNFB
2 cantnfs.a φAOn
3 cantnfs.b φBOn
4 oemapval.t T=xy|zBxzyzwBzwxw=yw
5 oecl AOnBOnA𝑜BOn
6 2 3 5 syl2anc φA𝑜BOn
7 eloni A𝑜BOnOrdA𝑜B
8 ordwe OrdA𝑜BEWeA𝑜B
9 6 7 8 3syl φEWeA𝑜B
10 1 2 3 4 cantnf φACNFBIsomT,ESA𝑜B
11 isowe ACNFBIsomT,ESA𝑜BTWeSEWeA𝑜B
12 10 11 syl φTWeSEWeA𝑜B
13 9 12 mpbird φTWeS
14 6 7 syl φOrdA𝑜B
15 isocnv ACNFBIsomT,ESA𝑜BACNFB-1IsomE,TA𝑜BS
16 10 15 syl φACNFB-1IsomE,TA𝑜BS
17 ovex ACNFBV
18 17 dmex domACNFBV
19 1 18 eqeltri SV
20 exse SVTSeS
21 19 20 ax-mp TSeS
22 eqid OrdIsoTS=OrdIsoTS
23 22 oieu TWeSTSeSOrdA𝑜BACNFB-1IsomE,TA𝑜BSA𝑜B=domOrdIsoTSACNFB-1=OrdIsoTS
24 13 21 23 sylancl φOrdA𝑜BACNFB-1IsomE,TA𝑜BSA𝑜B=domOrdIsoTSACNFB-1=OrdIsoTS
25 14 16 24 mpbi2and φA𝑜B=domOrdIsoTSACNFB-1=OrdIsoTS
26 25 simpld φA𝑜B=domOrdIsoTS
27 26 eqcomd φdomOrdIsoTS=A𝑜B
28 13 27 jca φTWeSdomOrdIsoTS=A𝑜B