Metamath Proof Explorer


Theorem offval3

Description: General value of ( F oF R G ) with no assumptions on functionality of F and G . (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Assertion offval3 FVGWFRfG=xdomFdomGFxRGx

Proof

Step Hyp Ref Expression
1 elex FVFV
2 1 adantr FVGWFV
3 elex GWGV
4 3 adantl FVGWGV
5 dmexg FVdomFV
6 inex1g domFVdomFdomGV
7 mptexg domFdomGVxdomFdomGFxRGxV
8 5 6 7 3syl FVxdomFdomGFxRGxV
9 8 adantr FVGWxdomFdomGFxRGxV
10 dmeq a=Fdoma=domF
11 dmeq b=Gdomb=domG
12 10 11 ineqan12d a=Fb=Gdomadomb=domFdomG
13 fveq1 a=Fax=Fx
14 fveq1 b=Gbx=Gx
15 13 14 oveqan12d a=Fb=GaxRbx=FxRGx
16 12 15 mpteq12dv a=Fb=GxdomadombaxRbx=xdomFdomGFxRGx
17 df-of fR=aV,bVxdomadombaxRbx
18 16 17 ovmpoga FVGVxdomFdomGFxRGxVFRfG=xdomFdomGFxRGx
19 2 4 9 18 syl3anc FVGWFRfG=xdomFdomGFxRGx