Metamath Proof Explorer


Theorem ofoacom

Description: Component-wise addition of natural numnber-yielding functions commutes. (Contributed by RP, 5-Jan-2025)

Ref Expression
Assertion ofoacom AVFωAGωAF+𝑜fG=G+𝑜fF

Proof

Step Hyp Ref Expression
1 elmapfn FωAFFnA
2 1 ad2antrl AVFωAGωAFFnA
3 elmapfn GωAGFnA
4 3 ad2antll AVFωAGωAGFnA
5 simpl AVFωAGωAAV
6 inidm AA=A
7 2 4 5 5 6 offn AVFωAGωAF+𝑜fGFnA
8 4 2 5 5 6 offn AVFωAGωAG+𝑜fFFnA
9 elmapi FωAF:Aω
10 9 ad2antrl AVFωAGωAF:Aω
11 10 ffvelcdmda AVFωAGωAaAFaω
12 elmapi GωAG:Aω
13 12 ad2antll AVFωAGωAG:Aω
14 13 ffvelcdmda AVFωAGωAaAGaω
15 nnacom FaωGaωFa+𝑜Ga=Ga+𝑜Fa
16 11 14 15 syl2anc AVFωAGωAaAFa+𝑜Ga=Ga+𝑜Fa
17 2 4 jca AVFωAGωAFFnAGFnA
18 5 anim1i AVFωAGωAaAAVaA
19 fnfvof FFnAGFnAAVaAF+𝑜fGa=Fa+𝑜Ga
20 17 18 19 syl2an2r AVFωAGωAaAF+𝑜fGa=Fa+𝑜Ga
21 4 2 jca AVFωAGωAGFnAFFnA
22 fnfvof GFnAFFnAAVaAG+𝑜fFa=Ga+𝑜Fa
23 21 18 22 syl2an2r AVFωAGωAaAG+𝑜fFa=Ga+𝑜Fa
24 16 20 23 3eqtr4d AVFωAGωAaAF+𝑜fGa=G+𝑜fFa
25 7 8 24 eqfnfvd AVFωAGωAF+𝑜fG=G+𝑜fF