Metamath Proof Explorer


Theorem ofscom

Description: The outer five segment predicate commutes. (Contributed by Scott Fenton, 26-Sep-2013)

Ref Expression
Assertion ofscom NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCDOuterFiveSegEFGHEFGHOuterFiveSegABCD

Proof

Step Hyp Ref Expression
1 ancom BBtwnACFBtwnEGFBtwnEGBBtwnAC
2 1 a1i NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACFBtwnEGFBtwnEGBBtwnAC
3 simp11 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NN
4 simp12 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NA𝔼N
5 simp13 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NB𝔼N
6 simp23 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NE𝔼N
7 simp31 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NF𝔼N
8 cgrcom NA𝔼NB𝔼NE𝔼NF𝔼NABCgrEFEFCgrAB
9 3 4 5 6 7 8 syl122anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCgrEFEFCgrAB
10 simp21 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NC𝔼N
11 simp32 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NG𝔼N
12 cgrcom NB𝔼NC𝔼NF𝔼NG𝔼NBCCgrFGFGCgrBC
13 3 5 10 7 11 12 syl122anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBCCgrFGFGCgrBC
14 9 13 anbi12d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCgrEFBCCgrFGEFCgrABFGCgrBC
15 simp22 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼ND𝔼N
16 simp33 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NH𝔼N
17 cgrcom NA𝔼ND𝔼NE𝔼NH𝔼NADCgrEHEHCgrAD
18 3 4 15 6 16 17 syl122anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NADCgrEHEHCgrAD
19 cgrcom NB𝔼ND𝔼NF𝔼NH𝔼NBDCgrFHFHCgrBD
20 3 5 15 7 16 19 syl122anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBDCgrFHFHCgrBD
21 18 20 anbi12d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NADCgrEHBDCgrFHEHCgrADFHCgrBD
22 2 14 21 3anbi123d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NBBtwnACFBtwnEGABCgrEFBCCgrFGADCgrEHBDCgrFHFBtwnEGBBtwnACEFCgrABFGCgrBCEHCgrADFHCgrBD
23 brofs NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCDOuterFiveSegEFGHBBtwnACFBtwnEGABCgrEFBCCgrFGADCgrEHBDCgrFH
24 brofs NE𝔼NF𝔼NG𝔼NH𝔼NA𝔼NB𝔼NC𝔼ND𝔼NEFGHOuterFiveSegABCDFBtwnEGBBtwnACEFCgrABFGCgrBCEHCgrADFHCgrBD
25 3 6 7 11 16 4 5 10 15 24 syl333anc NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NEFGHOuterFiveSegABCDFBtwnEGBBtwnACEFCgrABFGCgrBCEHCgrADFHCgrBD
26 22 23 25 3bitr4d NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NG𝔼NH𝔼NABCDOuterFiveSegEFGHEFGHOuterFiveSegABCD