Metamath Proof Explorer


Theorem ofval

Description: Evaluate a function operation at a point. (Contributed by Mario Carneiro, 20-Jul-2014)

Ref Expression
Hypotheses offval.1 φFFnA
offval.2 φGFnB
offval.3 φAV
offval.4 φBW
offval.5 AB=S
ofval.6 φXAFX=C
ofval.7 φXBGX=D
Assertion ofval φXSFRfGX=CRD

Proof

Step Hyp Ref Expression
1 offval.1 φFFnA
2 offval.2 φGFnB
3 offval.3 φAV
4 offval.4 φBW
5 offval.5 AB=S
6 ofval.6 φXAFX=C
7 ofval.7 φXBGX=D
8 eqidd φxAFx=Fx
9 eqidd φxBGx=Gx
10 1 2 3 4 5 8 9 offval φFRfG=xSFxRGx
11 10 fveq1d φFRfGX=xSFxRGxX
12 11 adantr φXSFRfGX=xSFxRGxX
13 fveq2 x=XFx=FX
14 fveq2 x=XGx=GX
15 13 14 oveq12d x=XFxRGx=FXRGX
16 eqid xSFxRGx=xSFxRGx
17 ovex FXRGXV
18 15 16 17 fvmpt XSxSFxRGxX=FXRGX
19 18 adantl φXSxSFxRGxX=FXRGX
20 inss1 ABA
21 5 20 eqsstrri SA
22 21 sseli XSXA
23 22 6 sylan2 φXSFX=C
24 inss2 ABB
25 5 24 eqsstrri SB
26 25 sseli XSXB
27 26 7 sylan2 φXSGX=D
28 23 27 oveq12d φXSFXRGX=CRD
29 12 19 28 3eqtrd φXSFRfGX=CRD