Metamath Proof Explorer


Theorem om2uzlt2i

Description: The mapping G (see om2uz0i ) preserves order. (Contributed by NM, 4-May-2005) (Revised by Mario Carneiro, 13-Sep-2013)

Ref Expression
Hypotheses om2uz.1 C
om2uz.2 G=recxVx+1Cω
Assertion om2uzlt2i AωBωABGA<GB

Proof

Step Hyp Ref Expression
1 om2uz.1 C
2 om2uz.2 G=recxVx+1Cω
3 1 2 om2uzlti AωBωABGA<GB
4 1 2 om2uzlti BωAωBAGB<GA
5 fveq2 B=AGB=GA
6 5 a1i BωAωB=AGB=GA
7 4 6 orim12d BωAωBAB=AGB<GAGB=GA
8 7 ancoms AωBωBAB=AGB<GAGB=GA
9 nnon BωBOn
10 nnon AωAOn
11 onsseleq BOnAOnBABAB=A
12 ontri1 BOnAOnBA¬AB
13 11 12 bitr3d BOnAOnBAB=A¬AB
14 9 10 13 syl2anr AωBωBAB=A¬AB
15 1 2 om2uzuzi BωGBC
16 eluzelre GBCGB
17 15 16 syl BωGB
18 1 2 om2uzuzi AωGAC
19 eluzelre GACGA
20 18 19 syl AωGA
21 leloe GBGAGBGAGB<GAGB=GA
22 lenlt GBGAGBGA¬GA<GB
23 21 22 bitr3d GBGAGB<GAGB=GA¬GA<GB
24 17 20 23 syl2anr AωBωGB<GAGB=GA¬GA<GB
25 8 14 24 3imtr3d AωBω¬AB¬GA<GB
26 3 25 impcon4bid AωBωABGA<GB