Metamath Proof Explorer


Theorem omcan

Description: Left cancellation law for ordinal multiplication. Proposition 8.20 of TakeutiZaring p. 63 and its converse. (Contributed by NM, 14-Dec-2004)

Ref Expression
Assertion omcan AOnBOnCOnAA𝑜B=A𝑜CB=C

Proof

Step Hyp Ref Expression
1 omordi COnAOnABCA𝑜BA𝑜C
2 1 ex COnAOnABCA𝑜BA𝑜C
3 2 ancoms AOnCOnABCA𝑜BA𝑜C
4 3 3adant2 AOnBOnCOnABCA𝑜BA𝑜C
5 4 imp AOnBOnCOnABCA𝑜BA𝑜C
6 omordi BOnAOnACBA𝑜CA𝑜B
7 6 ex BOnAOnACBA𝑜CA𝑜B
8 7 ancoms AOnBOnACBA𝑜CA𝑜B
9 8 3adant3 AOnBOnCOnACBA𝑜CA𝑜B
10 9 imp AOnBOnCOnACBA𝑜CA𝑜B
11 5 10 orim12d AOnBOnCOnABCCBA𝑜BA𝑜CA𝑜CA𝑜B
12 11 con3d AOnBOnCOnA¬A𝑜BA𝑜CA𝑜CA𝑜B¬BCCB
13 omcl AOnBOnA𝑜BOn
14 eloni A𝑜BOnOrdA𝑜B
15 13 14 syl AOnBOnOrdA𝑜B
16 omcl AOnCOnA𝑜COn
17 eloni A𝑜COnOrdA𝑜C
18 16 17 syl AOnCOnOrdA𝑜C
19 ordtri3 OrdA𝑜BOrdA𝑜CA𝑜B=A𝑜C¬A𝑜BA𝑜CA𝑜CA𝑜B
20 15 18 19 syl2an AOnBOnAOnCOnA𝑜B=A𝑜C¬A𝑜BA𝑜CA𝑜CA𝑜B
21 20 3impdi AOnBOnCOnA𝑜B=A𝑜C¬A𝑜BA𝑜CA𝑜CA𝑜B
22 21 adantr AOnBOnCOnAA𝑜B=A𝑜C¬A𝑜BA𝑜CA𝑜CA𝑜B
23 eloni BOnOrdB
24 eloni COnOrdC
25 ordtri3 OrdBOrdCB=C¬BCCB
26 23 24 25 syl2an BOnCOnB=C¬BCCB
27 26 3adant1 AOnBOnCOnB=C¬BCCB
28 27 adantr AOnBOnCOnAB=C¬BCCB
29 12 22 28 3imtr4d AOnBOnCOnAA𝑜B=A𝑜CB=C
30 oveq2 B=CA𝑜B=A𝑜C
31 29 30 impbid1 AOnBOnCOnAA𝑜B=A𝑜CB=C