Description: The product of a limit ordinal with any nonzero ordinal is a limit ordinal. (Contributed by RP, 8-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | omlimcl2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni | |
|
2 | 1 | ad2antrr | |
3 | ne0i | |
|
4 | 3 | adantl | |
5 | id | |
|
6 | df-lim | |
|
7 | 6 | biimpri | |
8 | 2 4 5 7 | syl2an3an | |
9 | 8 | ex | |
10 | limelon | |
|
11 | 10 | ad3antlr | |
12 | simpll | |
|
13 | 12 | anim1i | |
14 | 0ellim | |
|
15 | 14 | adantl | |
16 | 15 | ad3antlr | |
17 | omlimcl | |
|
18 | 11 13 16 17 | syl21anc | |
19 | 18 | ex | |
20 | 9 19 | syld | |
21 | onuni | |
|
22 | 21 10 | anim12ci | |
23 | omcl | |
|
24 | 22 23 | syl | |
25 | simpr | |
|
26 | 24 25 | jca | |
27 | 26 | ad2antrr | |
28 | oalimcl | |
|
29 | 27 28 | syl | |
30 | simpr | |
|
31 | 30 | oveq2d | |
32 | 22 | ad2antrr | |
33 | omsuc | |
|
34 | 32 33 | syl | |
35 | 31 34 | eqtrd | |
36 | limeq | |
|
37 | 35 36 | syl | |
38 | 29 37 | mpbird | |
39 | 38 | ex | |
40 | orduniorsuc | |
|
41 | 2 40 | syl | |
42 | 20 39 41 | mpjaod | |