Metamath Proof Explorer


Theorem omlimcl2

Description: The product of a limit ordinal with any nonzero ordinal is a limit ordinal. (Contributed by RP, 8-Jan-2025)

Ref Expression
Assertion omlimcl2 AOnBCLimBALimB𝑜A

Proof

Step Hyp Ref Expression
1 eloni AOnOrdA
2 1 ad2antrr AOnBCLimBAOrdA
3 ne0i AA
4 3 adantl AOnBCLimBAA
5 id A=AA=A
6 df-lim LimAOrdAAA=A
7 6 biimpri OrdAAA=ALimA
8 2 4 5 7 syl2an3an AOnBCLimBAA=ALimA
9 8 ex AOnBCLimBAA=ALimA
10 limelon BCLimBBOn
11 10 ad3antlr AOnBCLimBALimABOn
12 simpll AOnBCLimBAAOn
13 12 anim1i AOnBCLimBALimAAOnLimA
14 0ellim LimBB
15 14 adantl BCLimBB
16 15 ad3antlr AOnBCLimBALimAB
17 omlimcl BOnAOnLimABLimB𝑜A
18 11 13 16 17 syl21anc AOnBCLimBALimALimB𝑜A
19 18 ex AOnBCLimBALimALimB𝑜A
20 9 19 syld AOnBCLimBAA=ALimB𝑜A
21 onuni AOnAOn
22 21 10 anim12ci AOnBCLimBBOnAOn
23 omcl BOnAOnB𝑜AOn
24 22 23 syl AOnBCLimBB𝑜AOn
25 simpr AOnBCLimBBCLimB
26 24 25 jca AOnBCLimBB𝑜AOnBCLimB
27 26 ad2antrr AOnBCLimBAA=sucAB𝑜AOnBCLimB
28 oalimcl B𝑜AOnBCLimBLimB𝑜A+𝑜B
29 27 28 syl AOnBCLimBAA=sucALimB𝑜A+𝑜B
30 simpr AOnBCLimBAA=sucAA=sucA
31 30 oveq2d AOnBCLimBAA=sucAB𝑜A=B𝑜sucA
32 22 ad2antrr AOnBCLimBAA=sucABOnAOn
33 omsuc BOnAOnB𝑜sucA=B𝑜A+𝑜B
34 32 33 syl AOnBCLimBAA=sucAB𝑜sucA=B𝑜A+𝑜B
35 31 34 eqtrd AOnBCLimBAA=sucAB𝑜A=B𝑜A+𝑜B
36 limeq B𝑜A=B𝑜A+𝑜BLimB𝑜ALimB𝑜A+𝑜B
37 35 36 syl AOnBCLimBAA=sucALimB𝑜ALimB𝑜A+𝑜B
38 29 37 mpbird AOnBCLimBAA=sucALimB𝑜A
39 38 ex AOnBCLimBAA=sucALimB𝑜A
40 orduniorsuc OrdAA=AA=sucA
41 2 40 syl AOnBCLimBAA=AA=sucA
42 20 39 41 mpjaod AOnBCLimBALimB𝑜A