Metamath Proof Explorer


Theorem omsval

Description: Value of the function mapping a content function to the corresponding outer measure. (Contributed by Thierry Arnoux, 15-Sep-2019) (Revised by AV, 4-Oct-2020)

Ref Expression
Assertion omsval RVtoOMeasR=a𝒫domRsupranxz𝒫domR|azzω*yxRy0+∞<

Proof

Step Hyp Ref Expression
1 df-oms toOMeas=rVa𝒫domrsupranxz𝒫domr|azzω*yxry0+∞<
2 dmeq r=Rdomr=domR
3 2 unieqd r=Rdomr=domR
4 3 pweqd r=R𝒫domr=𝒫domR
5 2 pweqd r=R𝒫domr=𝒫domR
6 rabeq 𝒫domr=𝒫domRz𝒫domr|azzω=z𝒫domR|azzω
7 5 6 syl r=Rz𝒫domr|azzω=z𝒫domR|azzω
8 simpl r=Ryxr=R
9 8 fveq1d r=Ryxry=Ry
10 9 esumeq2dv r=R*yxry=*yxRy
11 7 10 mpteq12dv r=Rxz𝒫domr|azzω*yxry=xz𝒫domR|azzω*yxRy
12 11 rneqd r=Rranxz𝒫domr|azzω*yxry=ranxz𝒫domR|azzω*yxRy
13 12 infeq1d r=Rsupranxz𝒫domr|azzω*yxry0+∞<=supranxz𝒫domR|azzω*yxRy0+∞<
14 4 13 mpteq12dv r=Ra𝒫domrsupranxz𝒫domr|azzω*yxry0+∞<=a𝒫domRsupranxz𝒫domR|azzω*yxRy0+∞<
15 id RVRV
16 dmexg RVdomRV
17 uniexg domRVdomRV
18 pwexg domRV𝒫domRV
19 mptexg 𝒫domRVa𝒫domRsupranxz𝒫domR|azzω*yxRy0+∞<V
20 16 17 18 19 4syl RVa𝒫domRsupranxz𝒫domR|azzω*yxRy0+∞<V
21 1 14 15 20 fvmptd3 RVtoOMeasR=a𝒫domRsupranxz𝒫domR|azzω*yxRy0+∞<